The promise of DNA methyltransferase inhibitors for the treatment of triple negative breast cancer

Main Article Content

Daifuku R.

Abstract

In cancer, loss of gene expression occurs about 10 times more frequently because of hypermethylation than mutations. Hypermethylation can inhibit genes that prevent cancer formation and genes responsible for an antitumor immune response, and is particularly common in triple negative breast cancer (TNBC). The reversibility of these covalent modifications makes them attractive targets for therapeutic intervention.


There are two approved DNA methyltransferase (DNMT) inhibitors for the treatment of hematologic malignancies, 5-azacytidine and decitabine. Unfortunately, these two drugs have not yet demonstrated efficacy in the treatment of breast cancer (BC). iMN013 is a nucleoside that has a base identical to decitabine and 5-azacytidine that confers DNMT inhibition, leading to the expression of hypermethylated genes. The sugar is identical to that of gemcitabine, a drug approved for the treatment of metastatic BC that inhibits ribonucleotide reductase, a critical target for TNBC survival. iMN013 is active against BC cell lines in the nM range.


The prodrug of iMN013, iMN041 was demonstrated to be an immunotherapeutic in a syngeneic tumor             mouse model with significant increases in granzyme B in NK and NKT cells, and in the ratios of CD8-T to regulatory T cells (Treg) and CD4-T to Treg cells while inhibiting myeloid-derived suppressor cells, compared to vehicle controls. Decreased numbers of Treg cells were noted in iMN041 treated animals, differing from decitabine which has been shown to stimulate an increase in Treg cells. A significant decrease in MAGE-A positive tumor cells in iMN041 treated mice suggests that these cells are one of the main targets of the activated immune system. Mage-A is frequently elevated in TNBC. iMN041 was effective in mouse xenograft models of solid tumors, including non-small cell lung, pancreatic, renal and TNBC. In the TNBC model (cell line DU4475), iMN041 demonstrated significant inhibition of tumor growth and improved survival of treated mice compared to vehicle control.


iMN041 raises the possibility of treating TNBC patients with a more effective and less toxic regimen that will favorably impact survival by derepressing genes, such as the tumor suppressor TP53, resulting in tumor cell apoptosis, and by stimulating of the patient’s own anti-tumor immune response.

Keywords: Triple-negative breast cancer, DNA methyltransferase inhibitors, Epigenetic therapy, iMN041, Tumor immunotherapy

Article Details

How to Cite
R., Daifuku. The promise of DNA methyltransferase inhibitors for the treatment of triple negative breast cancer. Medical Research Archives, [S.l.], v. 13, n. 2, feb. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6276>. Date accessed: 16 mar. 2025. doi: https://doi.org/10.18103/mra.v13i2.6276.
Section
Research Articles

References

1. CDC. gov. www.cdc.gov/united-states-cancer-statistics/publications/breast-cancer-stat-bite.html. Accessed 16 January 2025.

2. Waks AG, Winer EP Breast cancer treatment: a review. JAMA. 2019;321(3):288-300.

3. Zeichner SB, Terawaki H, Gogineni K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl). 2016;10:25-36.

4. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 Jun 9;22(1):61. doi: 10.1186/s13058-020-01296-5. PMID: 3251773 5; PMCID: PMC7285581.

5. Zhang J, Xia Y, Zhou X et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022 Sep 16;13: 977660. doi: 10.3389/fphar.2022.977660. PMID: 36188535; PMCID: PMC9523914.

6. Li Y, Zhang H, Merkher Y et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022 Aug 29;15(1):121. doi: 10.1186/s13045-022-01341-0. PMID: 3603891 3; PMCID: PMC9422136.

7. Yu J, Qin B, Moyer AM et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest. 2018;128(6):2376-2388.

8. Connolly RM, Li H, Jankowitz RC et al. Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: a phase II National Cancer Institute/Stand Up to Cancer Study. Clin Cancer Res. 2017;23(11):2691-2701.

9. Liu K, Wang YF, Cantemir C, Muller MT. Endogenous assays of DNA methyl transferases: Evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol. 2003;23(8):2709-19.

10. Virani S, Colacino JA, Kim JH, Rozek LS. Cancer epigenetics: a brief review. ILAR J. 2012 ;53(3-4):359-69.

11. Momparler RL. Epigenetic therapy of cancer with 5-aza-2’-deoxycytidine (decitabine). Semin Oncol. 2005;32:443-451.

12. Daifuku R. Pharmacoepigenetics of novel nucleoside DNA methyltransferase inhibitors. In: Pharmacoepigenetics, 2nd ed. Elsevier. Cacabellos R (Ed.). 2025; in press.

13. Highlights of Prescribing Information. Vidaza (Azacytidine for injection). Celgene. https://media.celgene.com/content/uploads/vidaza-pi.pdf. Accessed 10 March 2019.

14. Highlights of Prescribing Information. Dacogen® (Decitabine) for Injection. Otsuka America Pharmaceutical Inc. https://www.otsuka-us.com/media/static/DACOGEN-PI.pdf. Accessed 10 March 2019.

15. The European Medicines Agency. Dacogen (Decitabine), 2016. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002221/human_med_001589.jsp&mid=WC0b01ac058001d124. Accessed 19 August 2018.

16. Linnekamp JF, Butter R, Spijker R et al. Clinical and biological effects of demethylating agents on solid tumors - A systematic review. Cancer Treat Rev. 2017;54:10-23.

17. Falahi F, van Kruchten M, Martinet N et al. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res. 2014 Jul 29;16(4):412. doi: 10.1186/s13058-014-0412-z. PMID: 25410383 ; PMCID: PMC4303227.

18. Roll JD, Rivenbark AG, Sandhu R et al. Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation. Exp Mol Pathol. 2013;95(3):276-87.

19. Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol. 2021 Jul;72:198-213. doi: 10.1016/j.semcancer.2020.05. 010. Epub 2020 May 24. PMID: 32461152.

20. Yang X, Phillips DL, Ferguson AT et al. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001 Oct 1;61(19):7025-9. PMID: 11585728.

21. Man X, Li Q, Wang B et al. DNMT3A and DNMT3B in Breast Tumorigenesis and Potential Therapy. Front Cell Dev Biol. 2022 May 10;10: 916725. doi: 10.3389/fcell.2022.916725. PMID: 35620052; PMCID: PMC9127442.

22. Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol. 2022 Mar 1;10:813457. doi: 10.3389/fcell.2022.813457. PMID: 35300412; PMCID: PMC8921524.

23. Stolzenburg S, Beltran AS, Swift-Scanlan T et al. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene. 2015 Oct;34(43):5427-35. doi: 10.1038/onc.2014.470. Epub 2015 Feb 16. PMID: 25684141; PMCID: PMC4633433.

24. Li C, Xiong W, Liu X et al. Hypomethylation at non-CpG/CpG sites in the promoter of HIF-1α gene combined with enhanced H3K9Ac modification contribute to maintain higher HIF-1α expression in breast cancer. Oncogenesis. 2019 Apr 2;8(4):26. doi: 10.1038/s41389-019-0135-1. PMID: 30940798 ; PMCID: PMC6445832.

25. Liu, K., Xie, F., Gao, A. et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer 16, 62 (2017). https://doi.org/10.1186/s12943-017-0632-9

26. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest. 2020 Oct 1;130(10):50 74-5087. doi: 10.1172/JCI137552. PMID: 3287081 8; PMCID: PMC7524491.

27. Borges S, Döppler HR, Storz P. A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells. Breast Cancer Res Treat. 2014;144(1):79-91.

28. Tao K, Guo S, Chen R et al. Lysophosphatidic acid receptor 6 (LPAR6) expression and prospective signaling pathway analysis in breast cancer. Mol Diagn Ther. 2019. doi: 10.1007/s40291-019-00384-3.

29. Umeh-Garcia M, O'Geen H, Simion C et al. Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer. Br J Cancer. 2022 Aug;127(3):436-448. doi: 10.1038/s41416-022-01812-8. Epub 2022 Apr 19. PMID: 35440669; PMCID: PMC9346006.

30. Palomeras S, Diaz-Lagares Á, Viñas G et al. Epigenetic silencing of TGFBI confers resistance to trastuzumab in human breast cancer. Breast Cancer Res. 2019 Jul 5;21(1):79. doi: 10.1186/s13058-019-1160-x. PMID: 31277676; PMCID: PMC6612099.

31. Ponnusamy L, Mahalingaiah PKS, Chang YW, Singh KP. Reversal of epigenetic aberrations associated with the acquisition of doxorubicin resistance restores drug sensitivity in breast cancer cells. Eur J Pharm Sci. 2018 Oct 15;123:56-69. doi: 10.1016/j.ejps.2018.07.028. Epub 2018 Jul 19. PMID: 30016648.

32. He DX, Xia YD, Gu XT, Jin J, Ma X. A transcription/translation-based gene signature predicts resistance to chemotherapy in breast cancer. J Pharm Biomed Anal. 2015;102:500-8.

33. Mirza S, Sharma G, Pandya P, Ralhan R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem. 2010;342(1-2):101-9.

34. Hurtubise A, Momparler RL. Evaluation of antineoplastic action of 5-aza-2'-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs. 2004;15(2):161-7.

35. Nakajima W, Miyazaki K, Sakaguchi M et al. Epigenetic Priming with Decitabine Augments the Therapeutic Effect of Cisplatin on Triple-Negative Breast Cancer Cells through Induction of Proapoptotic Factor NOXA. Cancers (Basel). 2022 Jan 4;14(1):248. doi: 10.3390/cancers14010248. PMID: 35008411; PMCID: PMC8749981.

36. Li H, Chiappinelli KB, Guzzetta AA et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587-98.

37. Wu SY, Xiao Y, Wei JL et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021 Jul;9(7):e0025 28. doi: 10.1136/jitc-2021-002528. PMID: 3432127 5; PMCID: PMC8320259.

38. Xu Y, Li P, Liu Y et al. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond). 2022 Jun;42(6):493-516. doi: 10.1002/cac2.12313. Epub 2022 Jun 1. PMID: 35642676; PMCID: PMC9198339.

39. Corti C, Venetis K, Sajjadi E et al. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs. 2022 Jun;31(6):593-605. doi: 10.1080/13543784.2022.2054326. Epub 2022 Mar 24. PMID: 35311430.

40. Terracina KP, Graham LJ, Payne KK et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol Immunother. 2016;65(9):1061-73.

41. Klar AS, Gopinadh J, Kleber S, Wadle A, Renner C. Treatment with 5-Aza-2'-deoxycytidine induces expression of NY-ESO-1 and facilitates cytotoxic T lymphocyte-mediated tumor cell killing. PLoS One. 2015;10(10):e0139221.

42. Bennett CN, Tomlinson CC, Michalowski AM et al. Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer. Breast Cancer Res. 2012;14(4):R109.

43. Daifuku R, Hu Z, Saunthararajah Y. 5-aza-2',2'-Difluoro Deoxycytidine (NUC013): A Novel Nucleoside DNA Methyl Transferase Inhibitor and Ribonucleotide Reductase Inhibitor for the Treatment of Cancer. Pharmaceuticals (Basel). 2017 Jul 20;10(3):65. doi: 10.3390/ph10030065. PMID: 28726739; PMCID: PMC5620609.

44. Highlights of prescribing information. Gemzar (gemcitabine for injection). https://pi.lilly.com/us/gemzar.pdf. Accessed 19 February 2019.

45. Carey LA, Perou CM, Livasy CA et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492-502.

46. Zhang Q, Zeng SX, Lu H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell Biochem. 2014;85:281-319. doi: 10.1007/978-94-017-9211-0_16. PMID: 25201201; PMCID: PMC4472007.

47. Nieto M, Samper E, Fraga MF, González de Buitrago G, Esteller M, Serrano M. The absence of p53 is critical for the induction of apoptosis by 5-aza-2'-deoxycytidine. Oncogene. 2004 Jan 22;23(3 ):735-43. doi: 10.1038/sj.onc.1207175. PMID: 14737108.

48. Wang H, Wang Z, Wang Z et al. Decitabine induces IRF7-mediated immune responses in p53-mutated triple-negative breast cancer: a clinical and translational study. Front Med. 2024 Apr;18(2) :357-374. doi: 10.1007/s11684-023-1016-8. Epub 2023 Dec 29. PMID: 38157193.

49. Daifuku, R., Zhang, Y., Wang, J., Gu Q. iMN041 is an immunotherapeutic and an effective treatment in mouse xenograft models of pancreatic cancer, renal cancer and triple negative breast cancer. Transl Med Commun 9, 2 (2024). https://doi.org/10.1186/s41231-024-00161-3

50. Liu Y, Hu Y, Xue J et al. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer. 2023 Sep 2;22(1):145. doi: 10.1186 /s12943-023-01850-7. Erratum in: Mol Cancer. 2023 Sep 14;22(1):154. doi: 10.1186/s12943-023-01858-z. PMID: 37660039; PMCID: PMC10474743.

51. Daifuku R, Grimes S, Stackhouse M. NUC041, a Prodrug of the DNA Methytransferase Inhibitor 5-aza-2',2'-Difluorodeoxycytidine (NUC013), Leads to Tumor Regression in a Model of Non-Small Cell Lung Cancer. Pharmaceuticals (Basel). 2018 Apr 23;11(2):36. doi: 10.3390/ph11020036. PMID: 29690576; PMCID: PMC6027359.

52. Dong Y, Wang J, Tao QS, Shen YY, Zhai ZM. [Effectiveness and Mechanism of Decitabine Maintenance Therapy in Patients with Medium and Low-risk Acute Myeloid Leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022 Oct;30(5):1369-1375. Chinese. doi: 10.19746/j.cnki.issn.1009-2137.2022 .05.011. PMID: 36208237.

53. Luker AJ, Graham LJ, Smith TM Jr et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020 Feb 27;21(1):8. doi: 10.1186/s12865-020-0337-5. PMID: 32106810 ; PMCID: PMC7045411.

54. Cany J, Roeven MWH, Hoogstad-van Evert JS et al. Decitabine enhances targeting of AML cells by CD34+ progenitor-derived NK cells in NOD/SCI D/IL2Rgnull mice. Blood. 2018 Jan 11;131(2):202-214. doi: 10.1182/blood-2017-06-790204. Epub 2017 Nov 14. PMID: 29138222; PMCID: PMC5757681.

55. Li X, Zhang M, Cai S et al. Concentration-Dependent Decitabine Effects on Primary NK Cells Viability, Phenotype, and Function in the Absence of Obvious NK Cells Proliferation-Original Article. Front Pharmacol. 2021 Oct 25;12:755662. doi: 10.3389/fphar.2021.755662. PMID: 34759824; PM CID: PMC8573336.

56. Zhigarev D, Varshavsky A, MacFarlane AW 4th et al. Lymphocyte Exhaustion in AML Patients and Impacts of HMA/Venetoclax or Intensive Chemotherapy on Their Biology. Cancers (Basel). 2022 Jul 10;14 (14):3352. doi: 10.3390/cancers14143352. PMID: 35884414; PMCID: PMC9320805.

57. Landman, S., van der Horst, C., van Erp, P.E.J. et al. Immune responses to azacytidine in animal models of inflammatory disorders: a systematic review. J Transl Med 19, 11 (2021). https://doi.org/10.1186/s12967-020-02615-2

58. Huang YS, Tseng WY, Clanchy FIL et al. Pharmacological modulation of T cell immunity results in long-term remission of autoimmune arthritis. Proc Natl Acad Sci U S A. 2021 May 11;118 (19):e2100939118. doi: 10.1073/pnas.2100939118 . PMID: 33941676; PMCID: PMC8126779.

59. Kapur R, Semple JW. Decitabine revives Treg function in ITP. Blood. 2021 Aug 26;138(8):591-592. doi: 10.1182/blood.2021012108. PMID: 34436532.

60. Amaro A, Reggiani F, Fenoglio D et al. EPigenetic Immune-oncology Consortium Airc (EPICA) consortium. Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells. J Exp Clin Cancer Res. 2023 Mar 18;42(1): 67. doi: 10.1186/s13046-023-02628-x. PMID: 3693 4257; PMCID: PMC10024396.PMC7788785.Resea rch Square; 2023. DOI: 10.21203/rs.3.rs-2408433/v1.

61. Fang Y, Yuan XD, Liu HH et al. 5-Aza-2'-deoxycytidine may enhance the frequency of T regulatory cells from CD4+ naïve T cells isolated from the peripheral blood of patients with chronic HBV infection. Expert Rev Clin Immunol. 2021 Feb; 17(2):177-185. doi: 10.1080/1744666X.2020.1866 987. Epub 2021 Jan 13. PMID: 33353450.

62. Zhou J, Yao Y, Shen Q et al. Demethylating agent decitabine disrupts tumor-induced immune tolerance by depleting myeloid-derived suppressor cells. J Cancer Res Clin Oncol. 2017 Aug;143(8):13 71-1380. doi: 10.1007/s00432-017-2394-6. Epub 2017 Mar 20. PMID: 28321548.

63. Li W, Sang M, Hao X, Wu Y, Shan B. CTLA 4 blockade combined with 5 aza 2' deoxycytidine enhances the killing effect of MAGE A family common antigen peptide specific cytotoxic T cells on breast cancer. Oncol Rep. 2020 Oct;44(4):1758-1770.

64. Bert T, Lubomierski N, Gangsauge S et al. Expression spectrum and methylation-dependent regulation of melanoma antigen-encoding gene family members in pancreatic cancer cells. Pancreatology. 2002;2(2):146-54.

65. Kim KH, Choi JS, Kim IJ, Ku JL, Park JG. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol. 2006 Sep 21;12(35):5651-7. doi: 10.3748/wjg.v12.i35.5651. PMID: 17007017; PMCI D: PMC4088165.

66. Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–78.

67. Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359–67.

68. Ostrand-Rosenberg S, Fenselau C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. J Immunol. 2018;200(2):422–31.

69. Bauer CA, Kim EY, Marangoni F et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J Clin Invest. 2014 Jun;12 4(6):2425-40. doi: 10.1172/JCI66375. Epub 2014 May 8. PMID: 24812664; PMCID: PMC4089459.

70. Malla RR, Vasudevaraju P, Vempati RK et al. Regulatory T cells: Their role in triple-negative breast cancer progression and metastasis. Cancer. 2022 Mar 15;128(6):1171-1183. doi: 10.1002/cncr. 34084. Epub 2022 Jan 6. PMID: 34990009.

71. Eriksson E, Wenthe J, Irenaeus S, Loskog A, Ullenhag G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med. 2016;14(1):282.

72. Mazzu YZ, Armenia J, Nandakumar S et al. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Mol Oncol. 2020;14(8):1881–97.

73. Ellis GI, Riley JL. How to kill Treg cells for immunotherapy. Nat Cancer. 2020;1(12):1134–5.

74. Diab A, Gogas H, Sandhu S et al. Bempegaldesleukin Plus Nivolumab in Untreated Advanced Melanoma: The Open-Label, Phase III PIVOT IO 001 Trial Results. J Clin Oncol. 2023 Oct 20;41(30):4756-4767. doi: 10.1200/JCO.23.00172. Epub 2023 Aug 31. PMID: 37651676; PMCID: PMC10602507.

75. Karn T, Pusztai L, Ruckhäberle E et al. Melanoma antigen family A identified by the bimodality index defines a subset of triple negative breast cancers as candidates for immune response augmentation. Eur J Cancer. 2012 Jan;48(1):12-23. doi: 10.1016/j.ejca.2011.06.025. Epub 2011 Jul 7. PMID: 21741824.

76. Hou SY, Sang MX, Geng CZ et al. Expressions of MAGE-A9 and MAGE-A11 in breast cancer and their expression mechanism. Arch Med Res. 2014;45(1):44–51.

77. Krishnadas DK, Shusterman S, Bai F et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015 Oct;64(10):1251-60. doi: 10.1007/s00262-015-1731-3. Epub 2015 Jun 24. PMID: 26105625.

78. Shi X, Chen X, Fang B et al. Decitabine enhances tumor recognition by T cells through upregulating the MAGE-A3 expression in esophageal carcinoma. Biomed Pharmacother. 2019 Apr;112:108632. doi: 10.1016/j.biopha.2019 .108632. Epub 2019 Feb 20. PMID: 30797153.

79. Bush TL, Payton M, Heller S et al. AMG 900, a small-molecule inhibitor of aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models. Mol Cancer Ther. 2013;12(11):2356–66.

80. Yao HP, Zhuang CM, Zhou YQ et al. Oncogenic variant RON160 expression in breast cancer and its potential as a therapeutic target by small molecule tyrosine kinase inhibitor. Curr Cancer Drug Targets. 2013;13(6):686–97.