Circulating Cell-Free lncRNAs and Their Potential as Epigenetic Biomarkers for Type 2 Diabetes Mellitus
Main Article Content
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the fastest-growing metabolic diseases worldwide, primarily affecting adults, with most diagnoses occurring in individuals over 45. As a polygenic disorder, it is influenced by a complex interaction of environmental, genetic, and epigenetic factors. These factors contribute to its pathophysiology, including insulin resistance, primary β-cell failure, or a combination of both, often associated with oxidative stress. Type 2 Diabetes Mellitus frequently remains undiagnosed for years as patients progress through the prediabetes stage, characterized by hyperglycemia without noticeable symptoms. Moreover, a definitive cure remains elusive. Given the significant global health threat posed by Type 2 Diabetes Mellitus, there is an urgent need to advance research into noninvasive biomarkers for early diagnosis, prognosis, and the prediction of therapeutic responses. Recently, non-coding RNAs (ncRNAs) have attracted considerable attention. Although these molecules do not encode proteins, they play pivotal roles in various cellular processes, and dysregulation of their expression is increasingly linked to diseases. Aberrant ncRNA profiles have been identified in many diabetic patients, particularly those with complications. Recent evidence indicates that epigenetic dysregulation is a key driver in the onset and progression of Type 2 Diabetes Mellitus. These findings highlight non-coding RNAs as crucial players in developing Type 2 Diabetes Mellitus, with significant potential as biomarkers for predicting and monitoring disease progression. Early identification of diabetes or prediabetes can mitigate the risk of long-term complications, including cardiovascular disease, retinopathy, neuropathy, and nephropathy. This chapter focuses on circulating cell-free long non-coding RNAs, specifically linear and circular RNAs, and their roles in developing Type 2 Diabetes Mellitus. These molecules are particularly intriguing due to their unique structural properties and ability to regulate diverse biological processes. As research into circulating cell-free lncRNAs continues to expand, these molecules hold promise for providing novel insights into the disease’s molecular mechanisms, offering new possibilities for early diagnosis, prognosis, and personalized treatment strategies.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
[2] Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev. 2022 Nov;81: 101743.
[3] Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab. 2024 Feb 6;36(2):263-277.
[4] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89-95.
[5] Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, et al., Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023 Mar 2;8(1):98.
[6] Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. Adv Exp Med Biol. 2020; 1253:3-55.
[7] Sanbonmatsu K. Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function. Adv Exp Med Biol. 2022;1363: 23-32.
[8] Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn. 2020 Feb;20(2):151-167).
[9] He J, Wu F, Han Z, Hu M, Lin W, Li Y, et al., Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol. 2021 Apr 29;11: 632834.
[10] Yang L, Zhang X, Hu G. Circulating non-coding RNAs as new biomarkers and novel therapeutic targets in colorectal cancer. Clin Transl Oncol. 2021 Nov;23(11):2220-2236).
[11] Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021 Apr;11(4):e367.
[12] Ghafouri-Fard S, Safari M, Taheri M, Samadian M. Expression of Linear and Circular lncRNAs in Alzheimer's Disease. J Mol Neurosci. 2022 Feb;72(2):187-200.
[13] Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol. 2024 Oct;61(10):7919-7929.
[14] Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel). 2024 Jul 31;16(15):2728.
[15] Szilágyi M, Pös O, Márton É, Buglyó G, Soltész B, Keserű J, et al., Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application. Int J Mol Sci. 2020 Sep 17;21(18):6827.
[16] Ruan Y, Lin N, Ma Q, Chen R, Zhang Z, et al., Circulating LncRNAs Analysis in Patients with Type 2 Diabetes Reveals Novel Genes Influencing Glucose Metabolism and Islet β-Cell Function. Cell Physiol Biochem. 2018;46(1):335-350.
[17] Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells. 2020 Mar 9;9(3):659.
[18] Jiang J, Gao G, Pan Q, Liu J, Tian Y, Zhang X. Circular RNA circHIPK3 is downregulated in diabetic cardiomyopathy and overexpression of circHIPK3 suppresses PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis. Bioengineered. 2022 Mar;13(3):6272-6279.
[19] Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018 Nov;6(11):891-900.
[20] Xie F, Chan JC, Ma RC. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig. 2018 Sep;9(5):998-1015.
[21] GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023 Jul 15;402(10397):203-234.
[22] Diabetes. [ Mar; 2024].2024. https://www.who.int/health-topics/diabetes
[23] The top 10 causes of death. [Dec; 2020]. https://www.who.int/health-topics/diabetes
[24] Ramtahal R, Khan C, Maharaj-Khan K, Nallamothu S, Hinds A, Dhanoo A, Yeh HC, Hill-Briggs F, Lazo M. Prevalence of self-reported sleep duration and sleep habits in type 2 diabetes patients in South Trinidad. J Epidemiol Glob Health. 2015 Dec;5(4 Suppl 1): S35-43.
[25] Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023 Jun;66(6):986-1002.
[26] Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023 Jul 15;402: 203-234
[27] Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020 Mar;10(1):107-111.
[28] American Diabetes Association Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes. Diabetes Care. 2021 Jan;44(Suppl 1): S15-S33
[29] Harris MI, Eastman RC. Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev. 2000 Jul-Aug;16(4):230-6
[30] Himanshu D, Ali W, Wamique M. Type 2 diabetes mellitus: pathogenesis and genetic diagnosis. J Diabetes Metab Disord. 2020 Sep 22;19(2):1959-1966.
[31] Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595-607).
[32] Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990 Dec 15;113(12):909-15.
[33] (DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991 Mar;14(3):173-94.
[34] Kruszynska YT, Olefsky JM. Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J Investig Med. 1996 Oct;44(8):413-28.
[35] Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne). 2023 Mar 28;14: 1149239.
[36] (Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024 Jan;20(1):27-49.
[37] Porte D Jr. Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes. 1991 Feb;40(2):166-80.
[38] Mitrakou A, Kelley D, Mokan M, Veneman T, Pangburn T, Reilly J, et al., Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med. 1992 Jan 2;326(1):22-9.
[39] Fernández-Castañer M, Biarnés J, Camps I, Ripollés J, Gómez N, Soler J. Beta-cell dysfunction in first-degree relatives of patients with non-insulin-dependent diabetes mellitus. Diabet Med. 1996 Nov;13(11):953-9.
[40] Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020 Oct;63(10):2007-2021.
[41] Pfeifer MA, Halter JB, Porte D Jr. Insulin secretion in diabetes mellitus. Am J Med. 1981 Mar;70(3):579-88.
[42] Weir GC, Gaglia J, Bonner-Weir S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 2020 Mar;8(3):249-256.
[43] Holman RR, Clark A, Rorsman P. β-cell secretory dysfunction: a key cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2020 May;8(5):370.
[44] Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003 Jan;46(1):3-19.
[45] Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients. 2023 May 7;15(9):2217.
[46] Bonnefond A, Froguel P, Vaxillaire M. The emerging genetics of type 2 diabetes. Trends Mol Med. 2010 Sep;16(9):407-16.
[47] McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010 Dec 9;363(24):2339-50.
[48] DeForest N, Majithia AR. Genetics of Type 2 Diabetes: Implications from Large-Scale Studies. Curr Diab Rep. 2022 May;22(5):227-235.
[49] Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al., Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018 Nov;50(11):1505-1513.
[50] Imamura M, Maeda S. Perspectives on genetic studies of type 2 diabetes from the genome-wide association studies era to precision medicine. J Diabetes Investig. 2024 Apr;15(4):410-422).
[51] Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024 Jan;20(1):27-49.
[52] ENCODE Project Consortium; Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007 Jun 14;447(7146):799-816.
[53] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74.
[54] Wang A. Distinctive functional regime of endogenous lncRNAs in dark regions of human genome. Comput Struct Biotechnol J. 2022 May 16;20: 2381-2390.
[55] Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells. 2023 Nov 20;12(22):2660.
[56] Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells. 2023 Nov 20;12(22):2660.
[57] Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol. 2014 Jun;15(6):484-9.
[58] López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA. 2021 Feb 24;7(1):17.
[58] López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA. 2021 Feb 24;7(1):17.
[59] Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci US A. 1984 Apr;81(7):1966-70.
[60] Andersen J, Delihas N, Ikenaka K, Green PJ, Pines O, et al., The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Res. 1987 Mar 11;15(5):2089-101.
[61] Andersen J, Forst SA, Zhao K, Inouye M, Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem. 1989 Oct 25;264(30):17961-70.
[62] Inouye M, Delihas N. Small RNAs in the prokaryotes: a growing list of diverse roles. Cell. 1988 Apr 8;53(1):5-7.
[63] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74.
[64] Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al., Landscape of transcription in human cells. Nature. 2012 Sep 6;489(7414):101-8.
[65] Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinformatics. 2013;14 Suppl 14(Suppl 14):S2.
[66] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172: 393–407.
[67] Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, et al., Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci. 2019 Nov 8;20(22):5573.
[68] Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015 Feb 12;160(4): 595-606.
[69] Li J, Qu L, Sang L, Wu X, Jiang A, Liu J, et al., Micropeptides translated from putative long non-coding RNAs. Acta Biochim Biophys Sin (Shanghai). 2022 Mar 25;54(3): 292-300.
[70] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014 Jan;15(1):7-21.
[71] Sweta S, Dudnakova T, Sudheer S, Baker AH, Bhushan R. Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Front Cell Dev Biol. 2019 Oct 18;7: 228.
[72] Hobuß L, Bär C, Thum T. Long Non-coding RNAs: At the Heart of Cardiac Dysfunction? Front Physiol. 2019 Jan 29;10: 30.
[73] Sun L, Lin JD. Function and Mechanism of Long Noncoding RNAs in Adipocyte Biology. Diabetes. 2019 May;68(5): 887-896.
[74] Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol. 2017 Aug 22;18(9): 962-972.
[75] Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM. GENCODE 2021. Nucleic Acids Res. 2021 Jan 8;49(D1): D916-D923.
[76] Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland JE, Mudge JM, et al., GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2023 Jan 6;51(D1): D942-D949.
[77] Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 2017 Jul;23(7):1080-1087.
[78] van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, et al., Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014 Jan 7;15(1): R6.
[79] Jusic A, Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol. 2020 Mar 5;115(3): 23.
[80] Borgna V, Lobos-González L, Guevara F, Landerer E, Bendek M, Ávila R, et al., Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors. J Cancer. 2020 Jan 17;11(7):1780-1791.
[81] Kim KM, Noh JH, Abdelmohsen K, Gorospe M. Mitochondrial noncoding RNA transport. BMB Rep. 2017 Apr;50(4):164-174.
[82] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016 Jan;17(1): 47-62.
[83] Zhang X, Wang W, Zhu W, Dong J, Cheng Y, et al., Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci. 2019 Nov 8;20(22): 5573.
[84] Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev. 2015 Feb;36(1): 25-64.
[85] Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81: 145-66.
[86] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014 Jan;15(1): 7-21.
[87] J.M. Lorenzen, T. Thum. Long noncoding RNAs in kidney and cardiovascular diseases Nat Rev Nephrol, 12 (2016), pp. 360-373.
and neurological problems, was emphasized by the research.
[88] K.C. Wang, H.Y. Chang Molecular mechanisms of long noncoding RNAs Mol Cell, 43 (2011), pp. 904-914).
[89] Heidari R, Akbariqomi M, Asgari Y, Ebrahimi D, Alinejad-Rokny H. A systematic review of long non-coding RNAs with a potential role in breast cancer. Mutat Res Rev Mutat Res. 2021 Jan-Jun;787: 108375.
[90] Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S. Deep, et al., sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012 Sep;22(9):1616-25.
[91] Khan MR, Wellinger RJ, Laurent B. Exploring the Alternative Splicing of Long Noncoding RNAs. Trends Genet. 2021 Aug;37(8): 695-698.
[92] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016 Jan;17(1):47-62.
[93] Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012 Sep;22(9): 1775-89.
[94] Gloss BS, Dinger ME. The specificity of long noncoding RNA expression. Biochim Biophys Acta. 2016 Jan;1859(1):16-22.
[95] Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 2014 Jun 5;14(6): 752-61.
[96] Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006 Jan;22(1):1-5.
[97] Pheasant M, Mattick JS. Raising the estimate of functional human sequences. Genome Res. 2007 Sep;17(9):1245-53.
[98] Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012 Sep;22(9):1775-89.74,93–98.
[99] Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023 Jun;24(6):430-447.
[100] Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, et al., Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005 May 20;308(5725) :1149-54.
[101] Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. Mol Cell. 2017 Jan 5;65(1):25-38.
[102] Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, et al., Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell. 2020 Apr 30;181(3):621-636.e22.
[103] Jalali S, Kapoor S, Sivadas A, Bhartiya D, Scaria V. Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics. 2015 Jul 15;31(14):2241-51.
[104] Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med. 2018 Mar;24(3):257-277.
[105] Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015 Jun 22;5: 11516.
[106] Martignano F, Rossi L, Maugeri A, Gallà V, Conteduca V, De Giorgi U, et al., Urinary RNA-based biomarkers for prostate cancer detection. Clin Chim Acta. 2017 Oct;473: 96-105.
[107] Terracciano D, Ferro M, Terreri S, Lucarelli G, D'Elia C, Musi G, et al., Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers. Transl Res. 2017 Jun;184: 108-117.
[108] Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al., Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015 Mar;36(3):2007-12.
[109] Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ Res. 2017 Jan 20;120(2):381-399.
[110] Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016 Apr;17(4): 205-11.
[111] Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015 Aug;25(8): 981-4.
[112] Liu X, Wang X, Li J, Hu S, Deng Y, Yin H, et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci China Life Sci. 2020 Oct;63(10): 1429-1449.
[113] Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733.
[114] Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015 Aug;25(8): 981-4.
[115] Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017 May 23;16(1):94.
[116] Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976 Aug;8(4): 547-55.
[117] Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993 Jan;7(1) :155-60.
[118] Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013 Feb;19(2) :141-57.
[119] Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al., Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell. 2015 Jun 4;58(5): 870-85.
[120] Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, et al., Circular intronic long noncoding RNAs. Mol Cell. 2013 Sep 26;51(6) :792-806.
[121] Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019 Nov;20(11) :675-691.
[122] Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4) :381-8.
[123] Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020 Jan;98(1) :87-97.
[124] Zhang J, Zhang X, Li C, Yue L, Ding N, Riordan T, et al., Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells. RNA Biol. 2019 Feb;16(2) :220-232.
[125] Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020 Feb 10;10(8) :3503-3517.
[126] An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022 Jan 12;21(1) :14.
[127] Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020 Aug;21(8):475-490.
[128] Zhang L, Gao H, Li X, Yu F, Li P. The important regulatory roles of circRNA encoded proteins or peptides in cancer pathogenesis (Review). Int J Oncol. 2024 Feb;64(2):19.
[129] Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation. Exp Mol Med. 2024 Jun;56(6):1272-1280.
[130] Haque S, Ames RM, Moore K, Lee BP, Jeffery N, Harries LW. Islet-expressed circular RNAs are associated with type 2 diabetes status in human primary islets and in peripheral blood. BMC Med Genomics. 2020 Apr 20;13(1) :64).
[131] Li Y, Zhou Y, Zhao M, Zou J, Zhu Y, Yuan X, Liu Q, et al., Differential Profile of Plasma Circular RNAs in Type 1 Diabetes Mellitus. Diabetes Metab J. 2020 Dec;44(6) :854-865.
[132] Liu Y, Yang Y, Wang Z, Fu X, Chu XM, Li Y, et al., Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis. 2020 Apr;298 :14-26.
[133] Ojha R, Nandani R, Chatterjee N, Prajapati VK. Emerging Role of Circular RNAs as Potential Biomarkers for the Diagnosis of Human Diseases. Adv Exp Med Biol. 2018;1087 :141-157.
[134] Yang Y, Cheng H. Emerging Roles of ncRNAs in Type 2 Diabetes Mellitus: From Mechanisms to Drug Discovery. Biomolecules. 2024 Oct 27;14(11):1364.
[135] Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010 Apr 15;464(7291):1071-6.
[136] Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010 Aug 6;329(5992): 689-93.
[137] Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al., Long Noncoding RNA MALAT1 Regulates Cancer Glucose Metabolism by Enhancing mTOR-Mediated Translation of TCF7L2. Cancer Res. 2019 May 15;79(10): 2480-2493.
[138] Xu B, Gerin I, Miao H, Vu-Phan D, Johnson CN, Xu R, et al., Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One. 2010 Dec 2;5(12): e14199.
[139] (Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, Akerman İ, et al., Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet. 2014 Feb;46(2):136-143).
[140] Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci. 2023 Jun 10;24(12):9978.
[141] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al., Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013 Mar 21;495(7441):333-8.
[142] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al., Natural RNA circles function as efficient microRNA sponges. Nature. 2013 Mar 21;495(7441):384-8.
[143] Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Venø MT, et al., Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab. 2018 Mar;9: 69-83.
[144] Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, et al., Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother. 2023 Dec;168: 115744.
[145] Zhao Z, Li X, Jian D, Hao P, Rao L, Li M. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol. 2017 Mar;54(3):237-245.
[146] Chen X, Yin J, Zhang F, Xiao T, Zhao M. has_circ_CCNB1 and has_circ_0009024 function as potential biomarkers for the diagnosis of type 2 diabetes mellitus. J Clin Lab Anal. 2020 Oct;34(10): e23439.
[147] Yingying Z, Yongji Y, Qiuting C, Rifang L, Zhuanping Z. has_circ_0071106 can be used as a diagnostic marker for type 2 diabetes. Int J Med Sci. 2021 Apr 3;18(11):2312-2320.
[148] Liang H, Hou L, Wang Q, Zhou X, Sha L, Xu L, Lu X. Serum hsa_circ_0054633 Is Elevated and Correlated with Clinical Features in Type 2 Diabetes Mellitus. Ann Clin Lab Sci. 2021 Jan;51(1):90-96.
[149] Dai Y, Ma X, Zhang J, Yu S, Zhu Y, Wang J. hsa_circ_0115355 promotes pancreatic β-cell function in patients with type 2 diabetes through the miR-145/SIRT1 axis. J Clin Lab Anal. 2022 Aug;36(8): e24583.