CORONARY AND AORTIC CALCIFICATION AND COGNITIVE PERFORMANCE CHANGE IN ELSA-BRASIL: A LONGITUDINAL STUDY

Main Article Content

Igor Vasconcelos Barros Cronemberger Jesiana Ferreira Pedrosa Daniel Bos Luana Giatti Gonçalves Sandhi Maria Barreto

Abstract

Backgrounds and aims: Evidence of an association between arterial calcification and worse cognitive performance comes, for the most part, from cross-sectional studies focusing solely on coronary arteries and, even so, with some conflicting results. We sought to investigate whether the presence and severity of calcification in the coronary artery (CAC), total thoracic aorta (TAC) and its segments [ascending thoracic aorta (ATAC), aortic arch (AAC) and descending thoracic aorta (DTAC)] are longitudinally associated with changes in cognitive performance at 4 years of follow-up in Brazilian adults from the ELSA-Brasil cohort, independently of major cardiovascular risk factors.


Methods: Our study included 1,331 individuals (mean age 62.4 years) from the ELSA-Brasil cohort in the state of Minas Gerais who participated in two subsequent waves (2012-2014 and 2017-2019). Measurements of arterial calcification (CAC, TAC, ATAC, DTAC) were obtained by computed tomography during our study baseline and analyzed dichotomously (present or absent) and in levels (0, 1-399UA and ≥ 400UA); cognitive performance was evaluated in tests (trail B test, verbal fluency, memory test and G-factor) applied in baseline and follow-up visit. Sociodemographic parameters (gender, education, race/ color), behavioral (smoking and leisure-time physical activity) and clinical parameters (hypertension, diabetes and body mass index)] were ascertained through face-to-face interviews at baseline. For the statistical analysis, linear regression models with mixed effects were used.


Results: In the dichotomous analyzes of calcification, only the presence of any DTAC was associated with worse cognitive performance at baseline. When levels of calcification were considered, higher values (≥ 400UA) of CAC, TAC and AAC were also associated with worse cognitive performance either in trail B test or G-factor at baseline. In regard to DTAC, not only both medium (1-399UA) and higher values were associated with worse cognitive performance at baseline in several cognitive tests at baseline, but higher DTAC was found to be related to an accelerated decline in performances in memory tests and G-factor.


Conclusion: Although higher levels of CAC and total and segmental thoracic aorta calcification were both independently associated with worse cognitive performance in this cohort of Brazilian adults, only higher DTAC was implied in a decline in cognitive performance over approximately 4 year of follow-up.

Article Details

How to Cite
CRONEMBERGER, Igor Vasconcelos Barros et al. CORONARY AND AORTIC CALCIFICATION AND COGNITIVE PERFORMANCE CHANGE IN ELSA-BRASIL: A LONGITUDINAL STUDY. Medical Research Archives, [S.l.], v. 13, n. 3, mar. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6314>. Date accessed: 06 apr. 2025. doi: https://doi.org/10.18103/mra.v3i3.6314.
Section
Research Articles

References

1. Wang Y, Osborne MT, Tung B, Li M, Li Y. Imaging Cardiovascular Calcification. J Am Heart Assoc. 2018;7(13):1-15. doi:10.1161/JAHA.118.008 564.

2. Neves PO, Andrade J, Monção H. Coronary artery calcium score: current status. Radiol Bras. 2017; 50(3):182–189. doi:10.1590/0100-3984.2015.0235

3. Desai MY, Cremer PC, Schoenhagen P. Thoracic Aortic Calcification. JACC: Cardiovascular Imaging. 2018;11(7):1012–1026. doi:10.1016/j.jcm g.2018.03.023

4. Thomas IC, Thompson CA, Yang M, Allison MA, Forbang NI, Michos ED, et al. Thoracic Aorta Calcification and Noncardiovascular Disease–Related Mortality: The Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(8):1926–1932. doi: 10.1161/ATVBAHA.118.310850

5. Pedrosa JF, Brant LCC, de Aquino SA, Ribeiro AL, Barreto SM. Segmental Evaluation of Thoracic Aortic Calcium and Their Relations with Cardiovascular Risk Factors in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cells. 2021;18;10(5). doi:10.3390/cells10051243

6. Rodrıguez-Palomares JF, Masip AE. Aortic Calcium Score and Vascular Atherosclerosis in Asymptomatic Individuals: Beyond the Coronary Arteries. Rev Esp Cardiol. 2016;69(9):813-816. doi:10.1016/j.rec.2016.05.006

7. Hermann DM, Lehmann N, Gronewold J, Bauer M, Mahabadi AA, Weimar C, et al. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. European Heart Journal - Cardiovascular Imaging. 2015;16(6):684–690. doi:10.1093/ehjci/jeu293

8. van Oijen M, Jan de Jong F, Witteman JCM, Hofman A, Koudstaal PJ, Breteler MMB. Atherosclerosis and risk for dementia. Ann Neurol. 2007;61(5):403–410. doi: 10.1002/ana.21073

9. Chu Z, Cheng L, Tong Q. Carotid artery calcification score and its association with cognitive impairment. Clinical Interventions in Ageing. 2019; 14:167–177. doi: 10.2147/CIA.S192586

10. Nordestgaard LT, Christoffersen M, Frikke-Schmidt R. Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. Int. J. Mol. Sci. 2022;23(17):1-30. doi:10.3390/ijms23179777

11. Suemoto CK, Bittencourt MS, Santos IS, Benseñor IM, Lotufo PA. Coronary artery calcification and cognitive function: cross-sectional results from the ELSA-Brasil study: CAC and cognition. Int J Geriatr Psychiatry. 2017;32(12):e188–194. doi: 10.1002/gps.4698

12. Dempsey RJ, Vemuganti R, Varghese T, Hermann BP. A Review of Carotid Atherosclerosis and Vascular Cognitive Decline: A New Understanding of the Keys to Symptomology. Neurosurgery. 2010; 67(2):484–494. doi: 10.1227/01.NEU.0000371730.1 1404.36

13. Xia C, Vonder M, Sidorenkov G, Oudkerk M, de Groot JC, van der Harst P, et al. The Relationship of Coronary Artery Calcium and Clinical Coronary Artery Disease with Cognitive Function: A Systematic Review and Meta-Analysis. J Atheroscler Thromb. 2020;27(9):934–958. doi: 10.5551/jat.52928

14. Kuller LH, Lopez OL, Mackey RH, Rosano C, Edmundowicz D, Becker JT, et al. Subclinical Cardiovascular Disease and Death, Dementia, and Coronary Heart Disease in Patients 80+ Years. Journal of the American College of Cardiology. 2016;67(9):1013–1022. doi: 10.1016/j.jacc.2015.1 2.034

15. Xia C, Vonder M, Sidorenkov G, Ma R, Oudkerk M, van der Harst P, et al. Coronary Artery Calcium and Cognitive Function in Dutch Adults: Cross‐Sectional Results of the Population‐Based ImaLife Study. J Am Heart Assoc. 2021;10(4):1-12. doi: 10.1161/JAHA.120.018172

16. Vidal JS, Sigurdsson S, Jonsdottir MK, Eiriksdottir G, Thorgeirsson G, Kjartansson O, et al. Coronary Artery Calcium, Brain Function and Structure: The AGES-Reykjavik Study. Stroke. 2010;41(5):891–897. doi: 10.1161/STROKEAHA.11 0.579581

17. Rossetti HC, Weiner M, Hynan LS, Cullum CM, Khera A, Lacritz LH. Subclinical atherosclerosis and subsequent cognitive function. Atherosclerosis. 2015;241(1):36–41.doi: 10.1016/j.atherosclerosis.2 015.04.813

18. Bos D, Vernooij MW, Bruijn RFAG, Koudstaal PJ, Hofman A, Franco OH, et al. Atherosclerotic calcification is related to a higher risk of dementia and cognitive decline. Alzheimer’s & Dementia. 2015;11(6):639-647. doi: 10.1016/j.jalz.2014.05.1758

19. Fujiyoshi A, Jacobs DR, Fitzpatrick AL, Alonso A, Duprez DA, Sharrett AR, et al. Coronary Artery Calcium and Risk of Dementia in MESA (Multi-Ethnic Study of Atherosclerosis). Circ. Cardiovascular Imaging. 2017;10(5):1-7. doi: 10.1161/CIRCIMAGIN G.116.005349

20. Brodov Y, Gransar H, Rozanski A, et al. Extensive thoracic aortic calcification is an independent predictor of development of coronary artery calcium among individuals with coronary artery calcium score of zero. Atherosclerosis. 2015;238 (1):4-8. doi:10.1016/j.atherosclerosis.2014.10.100

21. Aquino EML, Barreto SM, Bensenor IM, Carvalho MS, Chor D, Duncan BB, et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and Design. American Journal of Epidemiology. 2012;175(4):315–324. doi: 10.1093/a je/kwr294

22. Schmidt MI, Duncan BB, Mill JG, Lotufo PA, Chor D, Barreto SM, et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). International Journal of Epidemiology. 2015;44(1):68–75. doi: 10.1093/ije/dyu027

23. Pedrosa JF, Ribeiro ALP, Santana PC, Araújo LF, Barreto SM. Relation of Thoracic Aortic and Coronary Artery Calcium to Cardiovascular Risk Factors (from The Brazilian Longitudinal Study of Adult Health [ELSA-Brazil]). The American Journal of Cardiology. 2019;124(11):1655–1661. doi: 10.1016/j.amjcard.2019.08.029

24. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology. 1990;15(4):827–832. doi: 10.1016/0735-1097(90)90282-T

25. Pedrosa JF, Barreto SM, Bittencourt MS, Ribeiro ALP. Anatomical References to Evaluate Thoracic Aorta Calcium by Computed Tomography. Curr Atheroscler Rep. 2019;21(12):51-62.
doi: 10.1007/s11883-019-0811-9

26. Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE. Coronary Calcium Score and Cardiovascular Risk. Journal of the American College of Cardiology. 2018;72(4):434–447. doi: 10.1016/j.jacc.2018.05.027

27. Craig CL, Marshall AL, Sj??Str??M M, Bauman AE, Booth ML, Ainsworth BE, et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity: Medicine & Science in Sports & Exercise. 2003;35(8):1381–1395. doi: 10.1249/01.M SS.0000078924.61453.FB

28. Mill JG, Pinto K, Griep RH, Goulart A, Foppa M, Lotufo PA, et al. Afericoes e exames clinicos realizados nos participantes do ELSA-Brasil. Rev Saúde Pública. 2013;47(suppl 2):54–62.
doi: 10.1590/S0034-8910.2013047003851

29. Passos VM de A, Caramelli P, Benseñor I, Giatti L, Barreto SM. Methods of cognitive function investigation in the Longitudinal Study on Adult Health (ELSA-Brasil). Sao Paulo Med J. 2014;132 (3):170–177. doi: 10.1590/1516-3180.2014.1323646

30. Silverman JM, Raiford K, Edland S, Fillenbaum G, Morris JC, Clark CM, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): Part VI. Family history assessment: A multicenter study of first‐degree relatives of Alzheimer’s disease probands and nondemented spouse controls. Neurology. 1994;44(7):1159–1165. doi: 10.1212/w nl.44.7.1253

31. Mistridis P, Egli SC, Iverson GL, Berres M, Willmes K, Welsh-Bohmer KA, et al. Considering the base rates of low performance in cognitively healthy older adults improves the accuracy to identify neurocognitive impairment with the Consortium to Establish a Registry for Alzheimer’s Disease-Neuropsychological Assessment Battery (CERAD-NAB). Eur Arch Psychiatry Clin Neurosci. 2015;265(5):407–417. doi: 10.1007/s00406-014-0571-z

32. Bertola L, Benseñor IM, Gross AL, Caramelli P, Barreto SM, Moreno AB, et al. Longitudinal measurement invariance of neuropsychological tests in a diverse sample from the ELSA-Brasil study. Braz J Psychiatry. 2021;43(3):254–261. doi: 10.1590/1516-4446-2020-0978

33. Bertola L, Benseñor IM, Goulart AC, Brunoni AR, Caramelli P, Barreto SM, et al. Normative Data for the ELSA-Brasil Neuropsychological Assessment and Operationalized Criterion for Cognitive Impairment for Middle-Aged and Older Adults. J Int Neuropsychol Soc. 2021;27(3):293–303. doi: 10.1017/S1355617720000880

34. Menezes ST, Giatti L, Colosimo EA, Ribeiro ALP, Brant LCC, Viana MC, et al. Aortic Stiffness and Age With Cognitive Performance Decline in the ELSA‐Brasil Cohort. J Am Heart Assoc. 2019;8 (24):1-12. doi: 10.1161/JAHA.119.013248.

35. Deary IJ. Intelligence. Annu Rev Psychol. 2012;63(1):453–482. doi: 10.1146/annurev-psych-120710-100353

36. Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statist Med. 1997;16(20):2349–2380. doi: 10.1002/(sici)1097-0258(19971030)16:20<2349::aid-sim667>3.0.co;2-e

37. Fausto MA, Carneiro M, Antunes CM de F, Pinto JA, Colosimo EA. O modelo de regressão linear misto para dados longitudinais: uma aplicação na análise de dados antropométricos desbalanceados. Cad Saúde Pública. 2008;24(3): 513–524. doi: 10.1590/S0102-311X2008000300005

38. Reis JP, Launer LJ, Terry JG, Loria CM, Zeki Al Hazzouri A, Sidney S, et al. Subclinical atherosclerotic calcification and cognitive functioning in middle-aged adults: The CARDIA study. Atherosclerosis. 2013;231(1):72–77. doi: 10.1016/j.atherosclerosis.2013.08.038

39. Bos D, Vernooij MW, Elias-Smale SE, Verhaaren BFJ, Vrooman HA, Hofman A, et al. Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging. Alzheimer’s & Dementia. 2012;8(5S):104-111.doi: 10.1016/j.jalz.2012.01.008

40. Sala M, van den Berg-Huysmans A, van der Grond J, Huisman M, Brandts A, Westenberg JJ, et al. Aortic Arch Stiffness Is Associated With Incipient Brain Injury in Patients With Hypertension. American Journal of Hypertension. 2016;29(6):705–712. doi: 10.1093/ajh/hpv161

41. McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, Munnery M, et al. Aortic Calcification Is Associated With Aortic Stiffness and Isolated Systolic Hypertension in Healthy Individuals. Hypertension. 2009;53(3):524–531. doi: 10.1161/HYP ERTENSIONAHA.108.126615

42. Aparicio HJ, Petrea RE, Massaro JM, Manning WJ, Oyama-Manabe N, Beiser AS, et al. Association of descending thoracic aortic plaque with brain atrophy and white matter hyperintensities: The Framingham Heart Study. Atherosclerosis. 2017;265: 305–311. doi: 10.1016/j.atherosclerosis.2017.0 6.919

43. Geerlings MI, Appelman APA, Vincken KL, Algra A, Witkamp TD, Mali WPTM, et al. Brain volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The SMART-MR study. Atherosclerosis. 2010;210(1):130–136. doi: 10.1016/j.atherosclerosis.2009.10.039

44. Ma YN, Xie WX, Hou ZH, An YQ, Ren XS, Ma YJ, et al. Association between coronary artery calcification and cognitive function in a Chinese community-based population. J of Geriatr Cardiol. 2021;18(7): 514–522. doi:10.11909/j.issn.1671-5411.2021.07.002

45. Hermann DM, Lehmann N, Gronewold J, et al. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur Heart J Cardiovasc Imaging. 2015;16(6):684-690. doi:10.1093/ehjci/jeu293

46. Majesky MW. Developmental Basis of Vascular Smooth Muscle Diversity. Arterioscler Thromb Vasc Biol. 2007;27(6):1248–1258. doi: 10.1161/ATVBAH A.107.141069

47. Libby P, Bornfeldt KE, Tall AR. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res Research. 2016; 118: 692-702. doi: 10.1161/CIRC RESAHA.115.306361

48. Allison MA, Criqui MH, Wright CM. Patterns and Risk Factors for Systemic Calcified Atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):331–336. doi: 10.1161/01.ATV.0000110786.02097.0c

49. Caselli RJ, Reiman EM, Locke DEC, Hutton ML, Hentz JG, Hoffman-Snyder C, et al. Cognitive Domain Decline in Healthy Apolipoprotein E ε4 Homozygotes Before the Diagnosis of Mild Cognitive Impairment. Arch Neurol. 2007;64(9): 1306-1311. doi: 10.1001/archneur.64.9.1306