Liquid Biopsy Based Approaches for Subtyping Non-Hodgkin Lymphomas: A Proposal to Address an Important Unmet Clinical Need
Main Article Content
Abstract
There are over 30 subtypes of non-Hodgkin lymphoma (NHL), each with distinct clinical and pathological features, prognoses, and treatment. Diagnosis of NHLs is made primarily through tissue biopsy. These procedures are invasive and carry risk, in addition to providing limited sampling from one portion of a single tumor lesion. Differentiating between subtypes of NHL can prove to be difficult, and incorrect diagnoses are not uncommon, which leads to delays in appropriate treatment. Thus, there is an unmet clinical need in the field, which we suggest can be improved by clinical implementation of liquid biopsy biomarkers. Liquid biopsies, including analysis of blood plasma for circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vesicles, are an emerging tool for diagnosis of tumors through blood or urine samples. In this review, we discuss the classification and significant features of the various subtypes of NHL, including their pathologic, clinical, and diagnostic criteria, and the latest progress on liquid biopsy biomarkers. The groundwork for studying and applying liquid biopsy biomarkers in non-Hodgkin lymphoma will aid in forming more accurate, less invasive diagnosis, which may ultimately help to guide earlier treatment and decrease disease burden.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Al-Hamadani, M. et al. Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am J Hematol 90, 790-795, doi:10.1002/ajh.24086 (2015).
3. Rossi, D., Spina, V., Bruscaggin, A. & Gaidano, G. Liquid biopsy in lymphoma. Haematologica 104, 648-652, doi:10.3324/haematol.2018.206177 (2019).
4. Iversen, O. H., Iversen, U., Ziegler, J. L. & Bluming, A. Z. Cell kinetics in Burkitt lymphoma. Eur J Cancer 10, 155-163, doi:10.1016/0014-2964(74)90148-0 (1974).
5. Cairo, M. S. et al. Burkitt's and Burkitt-like lymphoma in children and adolescents: a review of the Children's Cancer Group experience. Br J Haematol 120, 660-670, doi:10.1046/j.1365-2141.2003.04134.x (2003).
6. Panea, R. I. et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood 134, 1598-1607, doi:10.1182/blood.2019001880 (2019).
7. Piccaluga, P. P. et al. Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 117, 3596-3608, doi:10.1182/blood-2010-08-301556 (2011).
8. Ferry, J. A. Burkitt's lymphoma: clinicopathologic features and differential diagnosis. Oncologist 11, 375-383, doi:10.1634/theoncologist.11-4-375 (2006).
9. Kalisz, K. et al. An update on Burkitt lymphoma: a review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging 10, 56, doi:10.1186/s13244-019-0733-7 (2019).
10. Ogwang, M. D., Zhao, W., Ayers, L. W. & Mbulaiteye, S. M. Accuracy of Burkitt lymphoma diagnosis in constrained pathology settings: importance to epidemiology. Arch Pathol Lab Med 135, 445-450, doi:10.1043/2009-0443-EP.1 (2011).
11. Legason ID, Ogwang MD, Chamba C, Mkwizu E, El Mouden C, Mwinula H, Chirande L, Schuh A, Chiwanga F. A protocol to clinically evaluate liquid biopsies as a tool to speed up diagnosis of children and young adults with aggressive infection-related lymphoma in East Africa "(AI-REAL)". BMC Cancer. 2022 May 2;22(1):484. doi: 10.1186/s12885-022-09553-w. PMID: 35501771
12. Frost, M. et al. Comparative immunohistochemical analysis of pediatric Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Clin Pathol 121, 384-392, doi:10.1309/8WYN-VUTG-V9RP-HUQH (2004).
13. Lenze, D. et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 25, 1869-1876, doi:10.1038/leu.2011.156 (2011).
14. Freedman, A. Follicular lymphoma: 2018 update on diagnosis and management. Am J Hematol 93, 296-305, doi:10.1002/ajh.24937 (2018).
15. Sun, R., Medeiros, L. J. & Young, K. H. Diagnostic and predictive biomarkers for lymphoma diagnosis and treatment in the era of precision medicine. Mod Pathol 29, 1118-1142, doi:10.1038/modpathol.2016.92 (2016).
16. Nagy, A. et al. Quantitative Analysis and Monitoring of EZH2 Mutations Using Liquid Biopsy in Follicular Lymphoma. Genes-Basel 11, doi:ARTN 785 10.3390/genes11070785 (2020).
17. Luminari, S., Bellei, M., Biasoli, I. & Federico, M. Follicular lymphoma - treatment and prognostic factors. Rev Bras Hematol Hemoter 34, 54-59, doi:10.5581/1516-8484.20120015 (2012).
18. Lossos, I. S. & Gascoyne, R. D. Transformation of follicular lymphoma. Best Pract Res Clin Haematol 24, 147-163, doi:10.1016/j.beha.2011.02.006 (2011).
19. Hatipoğlu T, Esmeray Sönmez E, Hu X, Yuan H, Danyeli AE, Şeyhanlı A, Önal-Süzek T, Zhang W, Akman B, Olgun A, Özkal S, Alacacıoğlu İ, Özcan MA, You H, Küçük C. Plasma Concentrations and Cancer-Associated Mutations in Cell-Free Circulating DNA of Treatment-Naive Follicular Lymphoma for Improved Non-Invasive Diagnosis and Prognosis. Front Oncol. 2022 Jun 16;12:870487. doi: 10.3389/fonc.2022.870487. PMID: 35795062; PMCID: PMC9252432.
20. Jiménez-Ubieto A, Poza M, Martin-Muñoz A, Ruiz-Heredia Y, Dorado S, Figaredo G, Rosa-Rosa JM, Rodriguez A, Barcena C, Navamuel LP, Carrillo J, Sanchez R, Rufian L, Juárez A, Rodriguez M, Wang C, de Toledo P, Grande C, Mollejo M, Casado LF, Calbacho M, Baumann T, Rapado I, Gallardo M, Sarandeses P, Ayala R, Martínez-López J, Barrio S. Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing and PET/CT. Leukemia. 2023 Mar;37(3):659-669. doi: 10.1038/s41375-022-01803-x. Epub 2023 Jan 3. PMID: 36596983.
21. Martin-Munoz et al., Dynamic Response Assesment Combining Liquid Biopsy MRD and PET/CT in Follicular Lymphoma Patients Including CAR-T Cell Therapy. Blood (2022) 140 (Supplement 1): 3514–3515.
22. Bang YH, Shim JH, Ryu KJ, Kim YJ, Choi ME, Yoon SE, Cho J, Park B, Park WY, Kim WS, Kim SJ. Clinical relevance of serum-derived exosomal messenger RNA sequencing in patients with non-Hodgkin lymphoma. J Cancer. 2022 Feb 21;13(5):1388-1397. doi: 10.7150/jca.69639. PMID: 35371331; PMCID: PMC8965112.
23. Ekstrom Smedby, K. et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood 111, 4029-4038, doi:10.1182/blood-2007-10-119974 (2008).
24. Zucca, E., Bertoni, F., Vannata, B. & Cavalli, F. Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin Cancer Res 20, 5207-5216, doi:10.1158/1078-0432.CCR-14-0496 (2014).
25. Liu, H. X. et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H-pylori eradication. Gastroenterology 122, 1286-1294, doi:10.1053/gast.2002.33047 (2002).
26. Bertoni, F., Rossi, D., Raderer, M. & Zucca, E. Marginal Zone Lymphomas. Cancer J 26, 336-347, doi:10.1097/PPO.0000000000000463 (2020).
27. Zucca, E. et al. Marginal zone lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 31, 17-29, doi:10.1016/j.annonc.2019.10.010 (2020).
28. Nathwani, B. N. et al. Marginal zone B-cell lymphoma: A clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 17, 2486-2492, doi:10.1200/JCO.1999.17.8.2486 (1999).
29. Shah, B. D., Martin, P. & Sotomayor, E. M. Mantle cell lymphoma: a clinically heterogeneous disease in need of tailored approaches. Cancer Control 19, 227-235, doi:10.1177/107327481201900307 (2012).
30. Lakhotia R, Melani C, Dunleavy K, Pittaluga S, Saba N, Lindenberg L, Mena E, Bergvall E, Lucas AN, Jacob A, Yusko E, Steinberg SM, Jaffe ES, Wiestner A, Wilson WH, Roschewski M. Circulating tumor DNA predicts therapeutic outcome in mantle cell lymphoma. Blood Adv. 2022 Apr 26;6(8):2667-2680. doi: 10.1182/bloodadvances.2021006397. PMID: 35143622; PMCID: PMC9043939.
31. Luanpitpong S, Janan M, Thumanu K, Poohadsuan J, Rodboon N, Klaihmon P, Issaragrisil S. Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers (Basel). 2019 Apr 24;11(4):576. doi:10.3390/cancers11040576. PMID: 31022903; PMCID: PMC6521097.
32. Dreyling, M. & European Mantle Cell Lymphoma, N. Mantle cell lymphoma: biology, clinical presentation, and therapeutic approaches. Am Soc Clin Oncol Educ Book, 191-198, doi:10.14694/EdBook_AM.2014. 34.191 (2014).
33. Dreyling, M. et al. ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol 24, 857-877, doi:10.1093/annonc/mds643 (2013).
34. Ladha, A., Zhao, J., Epner, E. M. & Pu, J. J. Mantle cell lymphoma and its management: where are we now? Exp Hematol Oncol 8, 2, doi:10.1186/s40164-019-0126-0 (2019).
35. Kipps, T. J. et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3, 16096, doi:10.1038/nrdp.2016.96 (2017).
36. Wierda, W. G. et al. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 4.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 18, 185-217, doi:10.6004/jnccn.2020.0006 (2020).
37. Rossi, D. & Gaidano, G. Richter syndrome: molecular insights and clinical perspectives. Hematol Oncol 27, 1-10, doi:10.1002/hon.880 (2009).
38. Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ, Byrd JC. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood. 2015 May 21;125(21):3297-305. doi: 10.1182/blood-2014-12-618470. Epub 2015 Apr 1. PMID: 25833959; PMCID: PMC4440883.
39. De Luca L, D'Arena G, Simeon V, Trino S, Laurenzana I, Caivano A, La Rocca F, Villani O, Mansueto G, Deaglio S, Innocenti I, Laurenti L, Molica S, Pietrantuono G, De Stradis A, Del Vecchio L, Musto P. Characterization and prognostic relevance of circulating microvesicles in chronic lymphocytic leukemia. Leuk Lymphoma. 2017 Jun;58(6):1424-1432. doi: 10.1080/10428194.2016.1243790. Epub 2016 Oct 14. PMID: 27739922.
40. Smith, A. et al. Lymphoma incidence, survival and prevalence 2004-2014: sub-type analyses from the UK's Haematological Malignancy Research Network. Br J Cancer 112, 1575-1584, doi:10.1038/bjc.2015.94 (2015).
41. Li, S., Young, K. H. & Medeiros, L. J. Diffuse large B-cell lymphoma. Pathology 50, 74-87, doi:10.1016/j.pathol.2017.09.006 (2018).
42. Regazzo, G. et al. Diffuse large B-cell lymphoma: Time to focus on circulating blood nucleic acids? Blood Rev, 100776, doi:10.1016/j.blre.2020.100776 (2020).
43. Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia. 2022 Sep;36(9):2151-2164. doi: 10.1038/s41375-022-01618-w. Epub 2022 Jun 14. PMID: 35701522; PMCID: PMC9417989.
44. Xia, M. BCL10 Gain-of-Function Mutations Aberrantly Induce Canonical and Non-Canonical NF-Kb Activation and Resistance to Ibrutinib in ABC-DLBCL. 62nd ASH Annual Meeting and Exposition (2020).
45. Mondello P, Brea EJ, De Stanchina E, Toska E, Chang AY, Fennell M, Seshan V, Garippa R, Scheinberg DA, Baselga J, Wendel HG, Younes A. Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265P mutations. JCI Insight. 2018 Nov 15;3(22):e125568. doi: 10.1172/jci.insight.125568. Erratum for: JCI Insight. 2017 Mar 23;2(6):e90196. doi: 10.1172/jci.insight.90196. PMID: 30429379; PMCID: PMC6254785.
46. Matthiesen R, Gameiro P, Henriques A, Bodo C, Moraes MCS, Costa-Silva B, Cabeçadas J, Gomes da Silva M, Beck HC, Carvalho AS. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int J Mol Sci. 2022 Nov 1;23(21):13327. doi: 10.3390/ijms232113327. PMID: 36362114; PMCID: PMC9654702
47. Rinaldi F, Marchesi F, Palombi F, Pelosi A, Di Pace AL, Sacconi A, Terrenato I, Annibali O, Tomarchio V, Marino M, Cantonetti M, Vaccarini S, Papa E, MorettaL, Bertoni F, Mengarelli A, Regazzo G, Rizzo MG. MiR-22, a serum predictor ofpoo r outcome and therapy response in diffuse large B-cell lymphoma patients. Br J Haematol. 2021 Nov;195(3):399-404. doi: 10.1111/bjh.17734. Epub 2021 Jul 28. PMID: 34318932.
48. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016 May 19;127(20):2375-90. doi: 10.1182/blood-2016-01-643569. Epub 2016 Mar 15. PMID: 26980727; PMCID: PMC4874220.
49. Yamagishi Y, Sasaki N, Nakano Y, Matushita Y, Omura T, Shimizu S, Saito K, Kobayashi K, Narita Y, Kondo A, Shiokawa Y, Nagane M, Ichimura K. Liquid biopsy of cerebrospinal fluid for MYD88 L265P mutation is useful for diagnosis of central nervous system lymphoma. Cancer Sci. 2021 Nov;112(11):4702-4710. doi: 10.1111/cas.15133. Epub 2021 Sep 27. PMID: 34523186; PMCID: PMC8586690.
50. Gu J, Jiang T, Liu S, Ping B, Li R, Chen W, Wang L, Huang X, Xu G, Chang Q. Cell-Free DNA Sequencing of Intraocular Fluid as Liquid Biopsy in the Diagnosis of Vitreoretinal Lymphoma. Front Oncol. 2022 Jul 19;12:932674. doi: 10.3389/fonc.2022.932674. PMID: 35928872; PMCID: PMC9343589.
51. Baraniskin A, Schroers R. Liquid Biopsy and Other Non-Invasive Diagnostic Measures in PCNSL. Cancers (Basel). 2021 May 28;13(11):2665. doi: 10.3390/cancers13112665. PMID: 34071407; PMCID: PMC8198992.
52. Sasayama T, Nakamizo S, Nishihara M, Kawamura A, Tanaka H, Mizukawa K, Miyake S, Taniguchi M, Hosoda K, Kohmura E. Cerebrospinal fluid interleukin-10 is a potentially useful biomarker in immunocompetent primary central nervous system lymphoma (PCNSL). Neuro Oncol. 2012 Mar;14(3):368-80. doi: 10.1093/neuonc/nor203. Epub 2011 Dec 12. PMID: 22156547; PMCID: PMC3280797.
53. Shao J, Chen K, Li Q, Ma J, Ma Y, Lin Z, Kang H, Chen B. High Level of IL-10 in Cerebrospinal Fluid is Specific for Diagnosis of Primary Central Nervous System Lymphoma. Cancer Manag Res. 2020 Jul 24;12:6261-6268. doi: 10.2147/CMAR.S255482. PMID: 32801871; PMCID: PMC7386815.
54. Downs BM, Ding W, Cope LM, Umbricht CB, Li W, He H, Ke X, Holdhoff M, Bettegowda C, Tao W, Sukumar S. Methylated markers accurately distinguish primary central nervous system lymphomas (PCNSL) from other CNS tumors. Clin Epigenetics. 2021 May 5;13(1):104. doi: 10.1186/s13148-021-01091-9. PMID: 33952317; PMCID: PMC8097855.
55. Castillo, J. J., Olszewski, A. J., Cronin, A. M., Hunter, Z. R. & Treon, S. P. Survival trends in Waldenstrom macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood 123, 3999-4000, doi:10.1182/blood-2014-05-574871 (2014).
56. Gertz, M. A. Waldenstrom macroglobulinemia: 2021 update on diagnosis, risk stratification, and management. Am J Hematol 96, 258-269, doi:10.1002/ajh.26082 (2021).
57. Xu, L. et al. Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom's Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 28, 1698-1704, doi:10.1038/leu.2014.65 (2014).
58. Gertz, M. A., Fonseca, R. & Rajkumar, S. V. Waldenstrom's macroglobulinemia. Oncologist 5, 63-67, doi:10.1634/theoncologist.5-1-63 (2000).
59. Falini, B., Martelli, M. P. & Tiacci, E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood 128, 1918-1927, doi:10.1182/blood-2016-07-418434 (2016).
60. Maitre, E., Cornet, E. & Troussard, X. Hairy cell leukemia: 2020 update on diagnosis, risk stratification, and treatment. Am J Hematol 94, 1413-1422, doi:10.1002/ajh.25653 (2019).
61. Xi, L. et al. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood 119, 3330-3332, doi:10.1182/blood-2011-09-379339 (2012).
62. Arons, E., Suntum, T., Stetler-Stevenson, M. & Kreitman, R. J. VH4-34+ hairy cell leukemia, a new variant with poor prognosis despite standard therapy. Blood 114, 4687-4695, doi:10.1182/blood-2009-01-201731 (2009).
63. Rangoonwala HI, Cascella M. Peripheral T-Cell Lymphoma. 2023 Aug 7. In:StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32965972.
64. Wilcox, R. A. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 92, 1085-1102, doi:10.1002/ajh.24876 (2017).
65. Bagherani N, Smoller BR. An overview of cutaneous T cell lymphomas. F1000Res. 2016 Jul 28;5:F1000 Faculty Rev-1882. doi: 10.12688/f1000 research.8829.1. PMID: 27540476;PMCID: PMC4965697.
66. Trautinger, F. et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome - Update 2017. Eur J Cancer 77, 57-74, doi:10.1016/j.ejca.2017.02.027 (2017).
67. Agar, N. S. et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol 28, 4730-4739, doi:10.1200/JCO.2009.27.7665 (2010).
68. Ralfkiaer, U. et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118, 5891-5900, doi:10.1182/blood-2011-06-358382 (2011).
69. Huang, Y. et al. Thymocyte selection-associated high mobility group box gene (TOX) is aberrantly over-expressed in mycosis fungoides and correlates with poor prognosis. Oncotarget 5, 4418-4425, doi:10.18632/oncotarget.2031 (2014).
70. Dulmage, B., Geskin, L., Guitart, J. & Akilov, O. E. The biomarker landscape in mycosis fungoides and Sezary syndrome. Exp Dermatol 26, 668-676, doi:10.1111/exd.13261 (2017).
71. Brunner, P. M., Jonak, C. & Knobler, R. Recent advances in understanding and managing cutaneous T-cell lymphomas. F1000Res 9, doi:10.12688/f1000research.21922.1 (2020).
72. Stein, H. et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96, 3681-3695 (2000).
73. Medeiros, L. J. & Elenitoba-Johnson, K. S. Anaplastic Large Cell Lymphoma. Am J Clin Pathol 127, 707-722, doi:10.1309/r2q9ccuvtlrycf3h (2007).
74. Gascoyne, R. D. et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 93, 3913-3921 (1999).
75. Tsuyama, N., Sakamoto, K., Sakata, S., Dobashi, A. & Takeuchi, K. Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J Clin Exp Hematop 57, 120-142, doi:10.3960/jslrt.17023 (2017).
76. Ait-Tahar, K. et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood 115, 3314-3319, doi:10.1182/blood-2009-11-251892 (2010).
77. Lovisa F, Di Battista P, Gaffo E, Damanti CC, Garbin A, Gallingani I, Carraro E, Pillon M, Biffi A, Bortoluzzi S, Mussolin L. RNY4 in Circulating Exosomes of Patients With Pediatric Anaplastic Large Cell Lymphoma: An Active Player? Front Oncol. 2020 Feb 27;10:238. doi: 10.3389/fonc.2020.00238. PMID: 32175280; PMCID: PMC7056873.
78. Lovisa F, Garbin A, Crotti S, Di Battista P, Gallingani I, Damanti CC, Tosato A, Carraro E, Pillon M, Mafakheri E, Romanato F, Gaffo E, Biffi A, Bortoluzzi S, Agostini M, Mussolin L. Increased Tenascin C, Osteopontin and HSP90 Levels in Plasmatic Small Extracellular Vesicles of Pediatric ALK-Positive Anaplastic Large Cell Lymphoma: New Prognostic Biomarkers? Diagnostics (Basel). 2021 Feb 6;11(2):253. doi: 10.3390/diagnostics11020253. PMID: 33562105; PMCID: PMC7915848.
79. de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952-4963, doi:10.1182/blood-2006-10-055145 (2007).
80. Vose, J., Armitage, J., Weisenburger, D. & International, T. C. L. P. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26, 4124-4130, doi:10.1200/JCO.2008.16.4558 (2008).
81. Iannitto, E., Ferreri, A. J., Minardi, V., Tripodo, C. & Kreipe, H. H. Angioimmunoblastic T-cell lymphoma. Crit Rev Oncol Hematol 68, 264-271, doi:10.1016/j.critrevonc.2008.06.012 (2008).
82. Loghavi, S. et al. Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology. Leuk Lymphoma 57, 2804-2812, doi:10.3109/10428194.2016.1170827 (2016).
83. Shiratori, S. et al. Ultra-high level of serum soluble interleukin-2 receptor at diagnosis predicts poor outcome for angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 56, 2592-2597, doi:10.3109/10428194.2014.1001985 (2015).
84. Kim SJ, Kim YJ, Yoon SE, Ryu KJ, Park B, Park D, Cho D, Kim HY, Cho J, Ko YH, Park WY, Kim WS. Circulating Tumor DNA-Based Genotyping and Monitoring for Predicting Disease Relapses of Patients with Peripheral T-Cell Lymphomas. Cancer Res Treat. 2023 Jan;55(1):291-303. doi: 10.4143/crt.2022.017. Epub 2022 Mar 2. PMID: 35240014; PMCID: PMC9873338.
85. Ottolini B, Nawaz N, Trethewey CS, Mamand S, Allchin RL, Dillon R, Fields PA, Ahearne MJ, Wagner SD. Multiple mutations at exon 2 of RHOA detected in plasma from patients with peripheral T-cell lymphoma. Blood Adv. 2020 Jun 9;4(11):2392-2403. doi: 10.1182/bloodadvances.2019001075. PMID: 32484856; PMCID: PMC7284097.
86. Oluwasanjo A, Kartan S, Johnson W, Alpdogan O, Gru A, Mishra A, Haverkos BM, Gong J, Porcu P. Peripheral T-Cell Lymphoma, not Otherwise Specified (PTCL-NOS).
Cancer Treat Res. 2019;176:83-98. doi: 10.1007/978-3-319-99716-2_4. PMID: 30596214.
87. Khan M, Samaniego F, Hagemeister FB, Iyer SP. Emerging Therapeutic Landscape of Peripheral T-Cell Lymphomas Based on Advances in Biology: Current Status and Future Directions. Cancers (Basel). 2021 Nov 10;13(22):5627. doi:
10.3390/cancers13225627. PMID: 34830782; PMCID: PMC8616039.
88. Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer. 2020 Jun;20(6):323-342. doi: 10.1038/s41568-020-0247-0. Epub 2020 Apr 6. PMID: 32249838.
89. Miljkovic MD, Melani C, Pittaluga S, Lakhotia R, Lucas N, Jacob A, Yusko E, Jaffe ES, Wilson WH, Roschewski M. Next-generation sequencing-based monitoring of circulating tumor DNA reveals clonotypic heterogeneity in untreated PTCL. Blood Adv. 2021 Oct 26;5(20):4198-4210. doi: 10.1182/bloodadvances.2020003679. PMID: 34432874; PMCID: PMC8945631.
90. Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007 Apr;7(4):270-80. doi: 10.1038/nrc2111. PMID: 17384582.
91. Kamihira S, Atogami S, Sohda H, Momita S, Yamada Y, Tomonaga M. Significance of soluble interleukin-2 receptor levels for evaluation of the progression of adult T-cell leukemia. Cancer. 1994 Jun 1;73(11):2753-8. doi: 10.1002/1097-0142(19940601)73:11<2753::aid-cncr2820731117>3.0.co;2-x. PMID: 8194016.
92. Cook LB, Fuji S, Hermine O, Bazarbachi A, Ramos JC, Ratner L, Horwitz S, Fields P, Tanase A, Bumbea H, Cwynarski K, Taylor G, Waldmann TA, Bittencourt A, Marcais A, Suarez F, Sibon D, Phillips A, Lunning M, Farid R, Imaizumi Y, Choi I, Ishida T, Ishitsuka K, Fukushima T, Uchimaru K, Takaori-Kondo A, Tokura Y, Utsunomiya A, Matsuoka M, Tsukasaki K, Watanabe T. Revised Adult T-Cell Leukemia-Lymphoma International Consensus Meeting Report. J Clin Oncol. 2019 Mar 10;37(8):677-687. doi: 10.1200/JCO.18.00501. Epub 2019 Jan 18. PMID: 30657736; PMCID: PMC6494249.
93. Nakahata S, Saito Y, Marutsuka K, Hidaka T, Maeda K, Hatakeyama K, Shiraga T, Goto A, Takamatsu N, Asada Y, Utsunomiya A, Okayama A, Kubuki Y, Shimoda K, Ukai Y, Kurosawa G, Morishita K. Clinical significance of CADM1/TSLC1/IgSF4 expression in adult T-cell leukemia/lymphoma. Leukemia. 2012 Jun;26(6):1238-46. doi: 10.1038/leu.2011.379. Epub 2012 Jan 6. PMID: 22289924.
94. Nakahata S, Syahrul C, Nakatake A, Sakamoto K, Yoshihama M, Nishikata I, Ukai Y, Matsuura T, Kameda T, Shide K, Kubuki Y, Hidaka T, Kitanaka A, Ito A, Takemoto S, Nakano N, Saito M, Iwanaga M, Sagara Y, Mochida K, Amano M, Maeda K, Sueoka E, Okayama A, Utsunomiya A, Shimoda K, Watanabe T, Morishita K. Clinical significance of soluble CADM1 as a novel marker for adult T-cell leukemia/lymphoma. Haematologica. 2021 Feb 1;106(2):532-542. doi: 10.3324/haematol.2019.234096. PMID: 32054656; PMCID: PMC7849584.
95. Kwong YL. Natural killer-cell malignancies: diagnosis and treatment. Leukemia. 2005 Dec;19(12):2186-94. doi: 10.1038/sj.leu.2403955. PMID: 16179910.
96. Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021 Sep;35(9):2460-2468. doi: 10.1038/s41375-021-01313-2. Epub 2021 Jun 11. PMID: 34117356; PMCID: PMC8410593.
97. Qi F, Cao Z, Chen B, Chai Y, Lin J, Ye J, Wei Y, Liu H, Han-Zhang H, Mao X, Feng X, Dong M. Liquid biopsy in extranodal NK/T-cell lymphoma: a prospective analysis of cell-free DNA genotyping and monitoring. Blood Adv. 2021 Jun 8;5(11):2505-2514. doi: 10.1182/bloodadvances.2020001637. PMID: 34047776; PMCID: PMC8238484.
98. Lianidou, E. & Pantel, K. Liquid biopsies. Genes Chromosomes Cancer 58, 219-232, doi:10.1002/gcc.22695 (2019).
99. Alix-Panabieres, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59, 110-118, doi:10.1373/clinchem.2012.194258 (2013).
100. Masuda, T. et al. Clinical and biological significance of circulating tumor cells in cancer. Mol Oncol 10, 408-417, doi:10.1016/j.molonc.2016.01.010 (2016).
101. Cirillo, M., Craig, A. F. M., Borchmann, S. & Kurtz, D. M. Liquid biopsy in lymphoma: Molecular methods and clinical applications. Cancer Treat Rev 91, 102106, doi:10.1016/j.ctrv.2020.102106 (2020).
102. Scherer, F. et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med 8, 364ra155, doi:10.1126/scitranslmed.aai8545 (2016).
103. Thieblemont, C. et al. The germinal center/activated B-cell subclassification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study. J Clin Oncol 29, 4079-4087, doi:10.1200/JCO.2011. 35.4423 (2011).
104. Sidaway, P. ctDNA predicts outcomes in DLBCL. Nat Rev Clin Oncol 15, 655, doi:10.1038/s41571-018-0091-2 (2018).
105. Jeppesen, D. K. et al. Reassessment of Exosome Composition. Cell 177, 428-445 e418, doi:10.1016/j.cell.2019.02.029 (2019).
106. Zhang, H. & Lyden, D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc 14, 1027-1053, doi:10.1038/s41596-019-0126-x (2019).
107. Richter K, Reichel A, Vezočnik V. The role of asymmetric flow field-flow fractionation in drug development - From size separation to advanced characterization. J Chromatogr A. 2025 Jan 4;1739:465542. doi: 10.1016/j.chroma.2024.465542. Epub 2024 Nov 20. PMID: 39613510.
108. Bian J, Gobalasingham N, Purchel A, Lin J. The Power of Field-Flow Fractionation in Characterization of Nanoparticles in Drug Delivery. Molecules. 2023 May 18;28(10):4169. doi: 10.3390/molecules28104169. PMID: 37241911; PMCID: PMC10224342.
109. Garnica, T. K. et al. Liquid biopsy based on small extracellular vesicles predicts chemotherapy response of canine multicentric lymphomas. Sci Rep 10, 20371, doi:10.1038/s41598-020-77366-7 (2020).
110. Ofori, K., Bhagat, G. & Rai, A. J. Exosomes and extracellular vesicles as liquid biopsy biomarkers in diffuse large B-cell lymphoma: Current state of the art and unmet clinical needs. Brit J Clin Pharmaco 87, 284-294, doi:10.1111/bcp.14611 (2021).
111. Di, C., Jiang, Y., Li, M., Juan, X. & Xu, C. G. Circulating Exosomal microRNA Signature As a Noninvasive Biomarker for Diagnosis of Diffuse Large B-Cell Lymphoma. Blood 132, doi:10.1182/blood-2018-99-115940 (2018).
112. Aung, T. et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A 108, 15336-15341, doi:10.1073/pnas.1102855108 (2011).