Indirect Regulation of Na+, K+-ATPase by Neurotransmitters: Participation of Neurotransmitters in the Sodium Theory for Migraine

Main Article Content

Roger Gregory Biringer

Abstract

The European Migraine and Headache Alliance (https://www.emhalliance.org) estimates that migraine is one of the top ten leading causes of disability and affects 12-15% of the population. Migraine pathology is neurovascular. The neuroactivational aspect is strongly influenced by sodium ion concentration in the cerebrospinal fluid. Cerebrospinal fluid sodium levels' regulation primarily depends on the sodium pump Na+, K+-ATPase in the choroid plexus. The sodium theory for migraine suggests that the dysregulation of Na+, K+-ATPase in migraineurs results in elevated cerebrospinal fluid sodium, which is known to increase central sensitization, thereby predisposing these individuals to headaches.


The involvement of neurotransmitters in migraine pathology is well documented. Indirect regulation of Na+, K+-ATPase by neurotransmitters is well documented for many tissues including the brain. The focus of this review is to identify which neurotransmitters are involved in both migraine and Na+, K+-ATPase regulation in a manner consistent with the sodium theory for migraine. We believe that the identification of such neurotransmitters may lead to the development of new pharmaceuticals to address migraines.

Article Details

How to Cite
BIRINGER, Roger Gregory. Indirect Regulation of Na+, K+-ATPase by Neurotransmitters: Participation of Neurotransmitters in the Sodium Theory for Migraine. Medical Research Archives, [S.l.], v. 13, n. 2, feb. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6341>. Date accessed: 16 mar. 2025. doi: https://doi.org/10.18103/mra.v13i2.6341.
Section
Research Articles

References

1. Dukes HT, Vieth RG. Cerebral arteriography during migraine prodrome and headache. Neurology. 1964; 14:636-639. https://doi.org/10.1212/wnl.14.7.636

2. Masuzawa T, Shinoda S, Furuse M, Nakahara N, Abe F, Sato F. Cerebral angiographic changes on serial examination of a patient with migraine. Neuroradiology. 1983;24(5):277-281. https://doi.org/10.1007/BF00333181

3. Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol. 2010; 23(3):266-274. https://doi.org/10.1097/WCO.0b013e32833821c1

4. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4): 573-594. https://doi.org/10.1177/0271678X17733655

5. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619-6629. https://doi.org/10.1523/JNEUROSCI.0373-15.2015

6. Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol. 2023;270(7):3654-3666. https://doi.org/10.1007/s00415-023-11706-1

7. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006;46 Suppl 4:S182-191. https://doi.org/10.1111/j.1526-4610.2006.00602.x

8. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365-391. https://doi.org/10.1146/annurev-physiol-030212-183717

9. Aguilar-Shea AL, Membrilla Md JA, Diaz-de-Teran J. Migraine review for general practice. Aten Primaria. 2022;54(2):102208. https://doi.org/10.1016/j.aprim.2021.102208

10. Loder E, Rizzoli P. Pharmacologic Prevention of Migraine: A Narrative Review of the State of the Art in 2018. Headache. 2018;58 Suppl 3: 218-229. https://doi.org/10.1111/head.13375

11. Puledda F, Tassorelli C, Diener HC. New migraine drugs. Cephalalgia. 2023;43(3):33310242 21144784. https://doi.org/10.1177/03331024221144784

12. Hindiyeh NA, Zhang N, Farrar M, Banerjee P, Lombard L, Aurora SK. The Role of Diet and Nutrition in Migraine Triggers and Treatment: A Systematic Literature Review. Headache. 2020;60 (7):1300-1316. https://doi.org/10.1111/head.13836

13. V. T. Martin, R. B. Lipton, Epidemiology and biology of menstrual migraine. Headache. 2008;48 Suppl 3:S124-130. https://doi.org/10.1111/j.1526-4610.2008.01310.x

14. D. I. Friedman, T. De ver Dye, Migraine and the environment. Headache. 2009; 49:941-952. https://doi.org/10.1111/j.1526-4610.2009.01443.x

15. D. C. Buse, F. Andrasik, Behavioral medicine for migraine. Neurol Clin. 2009;27:445-465.
https://doi.org/10.1016/j.ncl.2009.01.003

16. Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31(12):1254-1265. https://doi.org/10.1177/0333102411408360

17. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847-1892. https://doi.org/10.1152/physrev.00004.2013

18. Ghaffari, H, Grant, SC, Petzold, LR, Harrington, MG. Regulation of cerebrospinal fluid and brain tissue sodium levels by choroid plexus and brain capillary endothelial cell sodium-potassium pumps during migraine. bioRxiv. 2019;572727. https://doi.org/10.1101/572727

19. Harrington MG, Fonteh AN, Cowan RP, Perrine K, Pogoda JM, Biringer RG, Hühmer AF. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128-1135. https://doi.org/10.1111/j.1526-4610.2006.00445.x

20. Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, et al. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50(3):459-478. https://doi.org/10.1111/j.1526-4610.2009.01551.x

21. Pietrobon D. Familial hemiplegic migraine. Neurotherapeutics. 2007;4(2):274-284.
https://doi.org/10.1016/j.nurt.2007.01.008

22. Matzner O, Devor M. Na+ conductance and the threshold for repetitive neuronal firing. Brain Res. 1992;597(1):92-98. https://doi.org/10.1016/0006-8993(92)91509-d

23. Harik SI, Doull GH, Dick AP. Specific ouabain binding to brain microvessels and choroid plexus. J Cereb Blood Flow Metab. 1985;5(1):156-160. https://doi.org/10.1038/jcbfm.1985.20

24. Gross NB, Abad N, Lichtstein D, Taron S, Aparicio L, Fonteh AN, et al. Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation. PLoS One. 2019;14(6):e0218041. https://doi.org/10.1371/journal.pone.0218041

25. Teriete P, Franzin CM, Choi J, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry. 2007;46(23):6774-6783. https://doi.org/10.1021/bi700391b

26. Teriete P, Thai K, Choi J, Marassi FM. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1. Biochim Biophys Acta. 2009;1788(11):2462-2470.
https://doi.org/10.1016/j.bbamem.2009.09.001

27. Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 1995;269(2 Pt 1):C295-311.
https://doi.org/10.1152/ajpcell.1995.269.2.C295

28. McDonough AA, Farley RA. Regulation of Na,K-ATPase activity. Curr Opin Nephrol Hypertens. 1993;2(5):725-734. https://doi.org/10.1097/00041552-199309000-00006

29. Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;9(5):267-276. https://doi.org/10.1007/s10194-008-0058-2

30. Hamel E. Serotonin and migraine: biology and clinical implications. Cephalalgia. 27(11):1293-1300.
https://doi.org/10.1111/j.1468-2982.2007.01476.x

31. Ferrari MD, Odink J, Tapparelli C, Van Kempen GM, Pennings EJ, Bruyn GW. Serotonin metabolism in migraine. Neurology. 1989;39(9): 1239-1242. https://doi.org/10.1212/wnl.39.9.1239

32. Ferrari MD, Saxena PR. On serotonin and migraine: a clinical and pharmacological review. Cephalalgia. 1993;13(3):151-165. https://doi.org/10.1046/j.1468-2982.1993.1303151.x

33. Sarrias MJ, Cabré P, Martínez E, Artigas F. Relationship between serotoninergic measures in blood and cerebrospinal fluid simultaneously obtained in humans. J Neurochem. 1990;54(3):783-786. https://doi.org/10.1111/j.1471-4159.1990.tb02319.x

34. De Benedittis G, Massei R. 5-HT precursors in migraine prophylaxis: a double-blind cross-over study with L-5-hydroxytryptophan versus placebo. The Clinical journal of pain. 1986;2(2):123-130.

35. Banzi R, Cusi C, Randazzo C, Sterzi R, Tedesco D, Moja L. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of migraine in adults. Cochrane Database Syst Rev. 2015;4(4):CD002919. https://doi.org/10.1002/14651858.CD002919.pub3

36. Burch R. Antidepressants for Preventive Treatment of Migraine. Curr Treat Options Neurol. 2019;21(4):18. https://doi.org/10.1007/s11940-019-0557-2

37. Humphrey PP, Feniuk W, Perren MJ, Connor HE, Oxford AW. The pharmacology of the novel 5-HT1-like receptor agonist, GR43175. Cephalalgia. 1989;9 Suppl 9:23-33.
https://doi.org/10.1111/J.1468-2982.1989.TB00069.X

38. Cabarrocas X, Zayas JM, Suris M. Equivalent efficacy of oral almotriptan, a new 5-HT1B/1D agonist, compared with sumatriptan 100mg. Headache. 1998;38:377-378.

39. Gupta P, Napler CM, Purdy J. In vitro profile of eletriptan, a new 5-HT1d–like receptor partial agonist. Cephalalgia. 1996;16:368.

40. Cameron C, Kelly S, Hsieh SC, Murphy M, Chen L, Kotb A, et al. Triptans in the Acute Treatment of Migraine: A Systematic Review and Network Meta-Analysis. Headache. 2015;55 Suppl 4:221-235. https://doi.org/10.1111/head.12601

41. Aggarwal M, Puri V, Puri S. Serotonin and CGRP in migraine. Ann Neurosci. 2012;19(2):88-94. https://doi.org/10.5214/ans.0972.7531.12190210

42. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, et al. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci. 2002;22(3): 1010-1019. https://doi.org/10.1523/JNEUROSCI.22-03-01010.2002

43. Taylor BK, Basbaum AI. Neurochemical characterization of extracellular serotonin in the rostral ventromedial medulla and its modulation by noxious stimuli. J Neurochem. 1995;65(2):578-589. https://doi.org/10.1046/j.1471-4159.1995.65020578.x

44. Steel SJ. 5-HT1F agonists. Handb Clin Neurol. 2024;199:43-50.
https://doi.org/10.1016/B978-0-12-823357-3.00032-X

45. Gamoh S, Hisa H, Yamamoto R. 5-hydroxytryptamine receptors as targets for drug therapies of vascular-related diseases. Biol Pharm Bull. 2013;36(9):1410-1415. https://doi.org/10.1248/bpb.b13-00317

46. Johnston MM, Rapoport AM. Triptans for the management of migraine. Drugs. 210;70(12): 1505-1518. https://doi.org/10.2165/11537990-000000000-00000

47. Uhlén M, Björling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920-1932. https://doi.org/10.1074/mcp.M500279-MCP200

48. Fisone G, Snyder GL, Aperia A, Greengard P. Na+,K(+)-ATPase phosphorylation in the choroid plexus: synergistic regulation by serotonin/ protein kinase C and isoproterenol/cAMP-PK/PP-1 pathways. Mol Med. 1998;4(4):258-265.

49. Hernández J, Condés-Lara M. Brain Na+/K(+)-ATPase regulation by serotonin and norepinephrine in normal and kindled rats. Brain Res. 1992;593(2):239-244. https://doi.org/10.1016/0006-8993(92)91313-4

50. Peña-Rangel MT, Mercado R, Hernández-Rodríguez J. Regulation of glial Na+/K+-ATPase by serotonin: identification of participating receptors. Neurochem Res. 1999;24(5):643-649.
https://doi.org/10.1023/a:1021048308232

51. Hernández RJ. Na+-K+-ATPase activity in the brain cortex of rats ontogenetically malnourished, and treated with serotonin precursors. Brain Res. 1979;162(2):348-352. https://doi.org/10.1016/0006-8993(79)90296-8

52. Budu CE, Efendiev R, Cinelli AM, Bertorello AM, Pedemonte CH. Hormonal-dependent recruitment of Na+,K+-ATPase to the plasmalemma is mediated by PKC beta and modulated by [Na+]i. Br J Pharmacol. 2002;137(8):1380-1386. https://doi.org/10.1038/sj.bjp.0704962

53. Sicuteri F. Dopamine, the second putative protagonist in headache. Headache. 1977;17(3): 129-131. https://doi.org/10.1111/j.1526-4610.1977.hed1703129.x

54. Barbanti P, Aurilia C, Egeo G, Fofi L, Guadagni F, Ferroni P. Dopaminergic symptoms in migraine: A cross-sectional study on 1148 consecutive headache center-based patients. Cephalalgia. 2020;40(11):1168-1176.
https://doi.org/10.1177/0333102420929023

55. Marmura MJ. Use of dopamine antagonists in treatment of migraine. Curr Treat Options Neurol. 2012;14(1):27-35. https://doi.org/10.1007/s11940-011-0150-9

56. Mascia A, Afra J, Schoenen J. Dopamine and migraine: a review of pharmacological, biochemical, neurophysiological, and therapeutic data. Cephalalgia. 1998;18(4):174-182.
https://doi.org/10.1046/j.1468-2982.1998.1804174.x

57. Gladstone JP. Dopamine and migraine: trigeminovascular nociception, genetics and therapeutics. Cephalalgia. 2007;27(11):1315-1320. https://doi.org/10.1111/j.1468-2982.2007.01479.x

58. Akerman S, Goadsby PJ. Dopamine and migraine: biology and clinical implications. Cephalalgia 2007;27(11):1308-1314. https://doi.org/10.1111/j.1468-2982.2007.01478.x

59. Lai PC, Huang YT. Evidence-based review and appraisal of the use of droperidol in the emergency department. Ci Ji Yi Xue Za Zhi. 2018;30(1):1-4. https://doi.org/10.4103/tcmj.tcmj_195_17

60. Jesani J, Simerson D. Pharmacologic Management of Acute Migraines in the Emergency Department. Adv Emerg Nurs J. 2019;41(2):150-162. https://doi.org/10.1097/TME.0000000000000229

61. Cerbo R, Barbanti P, Buzzi MG, Fabbrini G, Brusa L, Roberti C, et al. Dopamine hypersensitivity in migraine: role of the apomorphine test. Clin Neuropharmacol. 1997;20(1):36-41.
https://doi.org/10.1097/00002826-199702000-00004

62. Kopruszinski CM, Vizin R, Watanabe M, Martinez AL, de Souza LHM, Dodick DW, et al. Exploring the neurobiology of the premonitory phase of migraine preclinically - a role for hypothalamic kappa opioid receptors? J Headache Pain. 2022;23(1):126. https://doi.org/10.1186/s10194-022-01497-7

63. Kilinc YB, Torun I, Kilinc E. The effects and D2 receptor-mediated mechanisms of dopaminergic system modulation in in-vivo and in-vitro experimental models of migraine. Authorea Preprints. 2023 May 3. https://doi.org/10.22541/au.168311913.34285206/v1

64. D'Andrea G, D'Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, et al. The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia. 2013;33(11):932-937.
https://doi.org/10.1177/0333102413480755

65. D'Andrea G, Granella F, Perini F, Farruggio A, Leone M, Bussone G. Platelet levels of dopamine are increased in migraine and cluster headache. Headache. 2006;46(4):585-591.
https://doi.org/10.1111/j.1526-4610.2006.00407.x

66. Mignini F, Bronzetti E, Felici L, Ricci A, Sabbatini M, Tayebati SK, et al. Dopamine receptor immunohistochemistry in the rat choroid plexus. J Auton Pharmacol. 2000:20(5-6):325-332.
https://doi.org/10.1046/j.1365-2680.2000.00198.x

67. Kanoh N. Effects of dopamine hydrochloride (Inovan(R)) on ouabain-sensitive, K+-dependent, p-nitrophenylphosphatase activity of choroid plexus in guinea pigs. Brain Res. 1998;787(1):154-156. https://doi.org/10.1016/s0006-8993(97)01558-8

68. Pinto Ferreira M, DeLucia R, Luiz Aizenstein M, Glezer I, Scavone C. Fencamfamine modulates sodium, potassium-ATPase through cyclic AMP and cyclic AMP-dependent protein kinase in rat striatum. J Neural Transm (Vienna). 1998;105(6-7):549-560. https://doi.org/10.1007/s007020050078

69. Bertorello AM, Hopfield JF, Aperia A, Greengard P. Inhibition by dopamine of (Na(+)+K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature. 1990;347(6291):386-388.
https://doi.org/10.1038/347386a0

70. Nishi A, Fisone G, Snyder GL, Dulubova I, Aperia A, Nairn AC, et al. Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem. 2008;283(52):36441-36453. https://doi.org/10.1074/jbc.M805520200

71. Hazelwood LA, Free RB, Cabrera DM, Skinbjerg M, Sibley DR. Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem. 2008;283(52):36441-36453. https://doi.org/10.1074/jbc.M805520200

72. Sawas AH, Gilbert JC. The effects of dopamine agonists and antagonists on Na+,K+-ATPase and Mg2+-ATPase activities of synaptosomes. Biochem Pharmacol. 1982;31(8):1531-1533.
https://doi.org/10.1016/0006-29

73. Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, et al. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50(3):459-478.
https://doi.org/10.1111/j.1526-4610.2009.01551.x

74. Peroutka SJ. Migraine: a chronic sympathetic nervous system disorder. Headache. 2004;44(1):53-64. https://doi.org/10.1111/j.1526-4610.2004.04011.x

75. Wang F, Wang J, Cao Y, Xu Z. Serotonin-norepinephrine reuptake inhibitors for the prevention of migraine and vestibular migraine: a systematic review and meta-analysis. Reg Anesth Pain Med. 2020;45(5):323-330.
https://doi.org/10.1136/rapm-2019-101207

76. Sialakis C, Antoniou P. The effect of the selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors in prevention of the tension type headache and migraine: overview of Cochrane and non-Cochrane reviews. Scientific Chronicles/Epistimonika Chronika. 2018;23(3):288-300. https://www.researchgate.net/publication/330760338

77. Jackson JL, Kuriyama A, Kuwatsuka Y, Nickoloff S, Storch D, Jackson W, et al. Beta-blockers for the prevention of headache in adults, a systematic review and meta-analysis. PLoS One. 2019;14(3):e0212785. https://doi.org/10.1371/journal.pone.0212785

78. Nattero G, Lisino F, Brandi G, Gastaldi L, Genefke IK. Reserpine for migraine prophylaxis. Headache. 1976;15(4):279-281. https://doi.org/10.1111/j.1526-4610.1976.hed1504279.x

79. Mathew RJ, Weinman ML, Largen JW. Sympathetic-adrenomedullary activation and migraine. Headache. 1982;22(1):13-19. doi: 10.1111/j.1526-4610.1982.hed2201013.x.

80. Boccuni M, Alessandri M, Fusco BM, Cangi F. The pressor hyperresponsiveness to phenylephrine unmasks sympathetic hypofunction in migraine. Cephalalgia. 1989;9(4):239-245.
https://doi.org/10.1046/j.1468-2982.1989.0904239.x

81. Phillis JW, Wu PH. Catecholamines and the sodium pump in excitable cells. Prog Neurobiol. 1981;17(3):141-184. https://doi.org/10.1016/0301-0082(81)90012-5

82. Hernández-R J. Na+/K(+)-ATPase regulation by neurotransmitters. Neurochem Int. 1992;20(1):1-10. https://doi.org/10.1016/0197-0186(92)90119-c

83. Vizi ES, Oberfrank F. Na+/K(+)-ATPase, its endogenous ligands and neurotransmitter release. Neurochem Int. 1992;20(1):11-17. https://doi.org/10.1016/0197-0186(92)90120-g

84. Poulsen H, Morth P, Egebjerg J, Nissen P. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase. FEBS Lett. 2010;584(12):2589-2595. https://doi.org/10.1016/j.febslet.2010.04.035

85. Nilsson C, Lindvall-Axelsson M, Owman C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev. 1992;17(2):109-138.
https://doi.org/10.1016/0165-0173(92)90011-a

86. Speake T, Whitwell C, Kajita H, Majid A, Brown PD. Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech. 2001;52(1):49-59. https://doi.org/10.1002/1097-0029(20010101)52:1<49::AID-JEMT7>3.0.CO;2-C

87. Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol. 2000;20(2):183-196. https://doi.org/10.1023/a:1007045605751

88. Wichmann TO, Damkier HH, Pedersen M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases. Front Hum Neurosci. 2022;15:737217. https://doi.org/10.3389/fnhum.2021.737217

89. Clausen J, Formby B. Effect of noradrenaline on phosphatase activity in synaptic membrane of the rat brain. Nature. 1967;213(5074):389-390. https://doi.org/10.1038/213389a0

90. Yoshimura K. Activation of Na-K activated ATPase in rat brain by catecholamine. J Biochem. 1973;74(2):389-391.

91. Schaefer A, Unyi G, Pfeifer AK. The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain. Biochem Pharmacol. 1972;21 (17):2289-2294. https://doi.org/10.1016/0006-2952(72)90379-6

92. Kubo T, Goshima Y, Ueda H, Misu Y. Effects of yohimbine on endogenous noradrenaline release from hypothalamus and brainstem slices of spontaneously hypertensive rats. Jpn J Pharmacol. 1984;36(3):416-418. https://doi.org/10.1254/jjp.36.416

93. Swann AC. Stimulation of brain Na+, K+-ATPase by norepinephrine in vivo: prevention by receptor antagonists and enhancement by repeated stimulation. Brain Res. 1983;260(2):338-341.
https://doi.org/10.1016/0006-8993(83)90693-5

94. Swann AC, Grant SJ, Jablons D, Maas JW. Increased ouabain binding after repeated noradrenergic stimulation. Brain Res. 1981;213(2): 481-485. https://doi.org/10.1016/0006-8993(81)90258-4

95. Haywood JR, Vogh BP. Some measurements of autonomic nervous system influence on production of cerebrospinal fluid in the cat. J Pharmacol Exp Ther. 1979;208(2):341-346.

96. Swann AC, Steketee JD. Subacute noradrenergic agonist infusions in vivo increase Na+, K+-ATPase and ouabain binding in rat cerebral cortex. J Neurochem. 1989;52(5):1598-1604. https://doi.org/10.1111/j.1471-4159.1989.tb09214.x

97. Codina J, Liu J, Bleyer AJ, Penn RB, DuBose TD Jr. Phosphorylation of S955 at the protein kinase A consensus promotes maturation of the alpha subunit of the colonic H+,K+ -ATPase. J Am Soc Nephrol. 2006;17(7):1833-1840.
https://doi.org/10.1681/ASN.2006010032

98. Cornelius F, Mahmmoud YA. Direct activation of gastric H,K-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H,K-ATPase and Na,K-ATPase. Biophys J. 2003;84(3):1690-1700. https://doi.org/10.1016/S0006-3495(03)74977-7

99. Lin RZ, Chen J, Hu ZW, Hoffman BB. Phosphorylation of the cAMP response element-binding protein and activation of transcription by alpha1 adrenergic receptors. J Biol Chem. 1998; 273(45):30033-30038. https://doi.org/10.1074/jbc.273.45.30033

100. Lindvall M, Edvinsson L, Owman C. Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol. 1979;64(1):132-145. https://doi.org/10.1016/0014-4886(79)90010-4

101. Liu G, Mestre H, Sweeney AM, Sun Q, Weikop P, Du T, et al. Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Rep. 2020;33(12):108524. https://doi.org/10.1016/j.celrep.2020.108524

102. Gasparini CF, Griffiths LR. The biology of the glutamatergic system and potential role in migraine. Int J Biomed Sci. 2013;9(1):1-8.

103. Ramadan NM. The link between glutamate and migraine. CNS Spectr. 2003;8(6):446-449. https://doi.org/10.1017/s1092852900018757

104. Ferrari MD, Odink J, Bos KD, Malessy MJ, Bruyn GW. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology. 1990;40(10): 1582-1586. https://doi.org/10.1212/wnl.40.10.1582

105. Alam Z, Coombes N, Waring RH, Williams AC, Steventon GB. Plasma levels of neuroexcitatory amino acids in patients with migraine or tension headache. J Neurol Sci. 1998;156(1):102-106. https://doi.org/10.1016/s0022-510x(98)00023-9

106. Vaccaro M, Riva C, Tremolizzo L, Longoni M, Aliprandi A, Agostoni E, et al. Platelet glutamate uptake and release in migraine with and without aura. Cephalalgia. 2007;27(1):35-40.
https://doi.org/10.1111/j.1468-2982.2006.01234.x

107. Gallai V, Alberti A, Gallai B, Coppola F, Floridi A, Sarchielli P. Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid. Cephalalgia. 2003;23(3):166-174.
https://doi.org/10.1046/j.1468-2982.2003.00552.x

108. Peres MF, Zukerman E, Senne Soares CA, Alonso EO, Santos BF, Faulhaber MH. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. 2004;24(9):735-739. https://doi.org/10.1111/j.1468-2982.2004.00750.x

109. D'Eufemia P, Finocchiaro R, Lendvai D, Celli M, Viozzi L, Troiani P, et al. Erythrocyte and plasma levels of glutamate and aspartate in children affected by migraine. Cephalalgia. 1997;17(6):652-657.
https://doi.org/10.1046/j.1468-2982.1997.1706652.x

110. Martínez F, Castillo J, Rodríguez JR, Leira R, Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13(2):89-93.
https://doi.org/10.1046/j.1468-2982.1993.1302089.x

111. Bell T, Stokoe M, Khaira A, Webb M, Noel M, Amoozegar F, et al. GABA and glutamate in pediatric migraine. Pain. 2021;162(1):300-308. https://doi.org/10.1097/j.pain.0000000000002022

112. D'Andrea G, Cananzi AR, Joseph R, Morra M, Zamberlan F, Ferro Milone F, et al. Platelet glycine, glutamate and aspartate in primary headache. Cephalalgia. 1991;11(4):197-200.
https://doi.org/10.1046/j.1468-2982.1991.1104197.x

113. Cananzi AR, D'Andrea G, Perini F, Zamberlan F, Welch KM. Platelet and plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia. 1995;15(2):132-135. https://doi.org/10.1046/j.1468-2982.1995.015002132.x

114. Nam JH, Lee HS, Kim J, Kim J, Chu MK. Salivary glutamate is elevated in individuals with chronic migraine. Cephalalgia. 2018;38(8):1485-1492. https://doi.org/10.1177/0333102417742366

115. Ferrari A, Spaccapelo L, Pinetti D, Tacchi R, Bertolini A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia. 2009;29(4):423-429. https://doi.org/10.1111/j.1468-2982.2008.01749.x

116. Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res. 2006;326 (2):483-504. https://doi.org/10.1007/s00441-006-0266-5

117. Hoffmann J, Charles A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurotherapeutics. 2018;15(2):361-370. https://doi.org/10.1007/s13311-018-0616-5

118. Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013;9(9):948-959. https://doi.org/10.7150/ijbs.6426

119. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010; 50:295-322. https://doi.org/10.1146/annurev.pharmtox.011008.145533

120. Marcaida G, Kosenko E, Miñana MD, Grisolía S, Felipo V. Glutamate induces a calcineurin-mediated dephosphorylation of Na+,K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem. 1996;66(1):99-104. https://doi.org/10.1046/j.1471-4159.1996.66010099.x

121. Bulygina ER, Lyapina LY, Boldyrev AA. Activation of glutamate receptors inhibits Na/K-ATPase of cerebellum granule cells. Biochemistry (Mosc). 2002;67(9):1001-1005.
https://doi.org/10.1023/a:1020569802119

122. Bulygina E, Gerasimova O, Boldyrev A. Glutamate receptors regulate Na/K-ATPase in cerebellum neurons. Ann N Y Acad Sci. 2003;986: 611-613. https://doi.org/10.1111/j.1749-6632.2003.tb07262.x

123. Akkuratov EE, Lopacheva OM, Kruusmägi M, Lopachev AV, Shah ZA, Boldyrev AA, et al. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol Neurobiol. 2015;52(3):1726-1734. https://doi.org/10.1007/s12035-014-8975-3

124. Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 2004;447(5):469-479.
https://doi.org/10.1007/s00424-003-1146-4