The unsuspected ability of the human cell to oxygenate itself. Applications in cell biology
Main Article Content
Abstract
The transport of water across epithelia has remained an enigma ever since it was discovered over 200 years ago that water was transported across the isolated small intestine in the absence of osmotic and hydrostatic pressure gradients. While it is accepted that water transport is linked to solute transport, the actual mechanisms are not well understood. The movement of water and small molecules across the selectively permeable membranes of mammalian cells is a fundamental concept of physiology, which has not been resolved.
Cell membranes are complexes multicomponent structures, related to many basic cellular processes, such as substance transporting, energy conversion, signal transduction, mechano-sensing, cell adhesion and so on. However, cell membranes have long been difficult to study at a single-molecule level due to their complex and dynamic properties. Cell membranes are highly permeable to water, and water follows osmotic gradients. Osmotic gradients are generated when the concentration of solutes, such as sodium, is higher on one side of the membrane than the other.
But the mechanisms described are too mild to explain the control of the dynamics of the enormous amount of water that passes through the cell every minute. And since the control of the movement of water as well as solutes is fundamental for life, our observation about the presence of molecules capable of transforming the power of light into chemical energy, through the dissociation of intracellular water, as in plants, and this inside eukaryotic cells, marks a before and after in the knowledge about the mysteries of water movement and solutes inside cells.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423: 33−41
3. Lin JC, Duell K, Konopka JB (2004) A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled α-factor receptor. Mol Cell Biol 24: 2041−2051
4. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459: 574−577
5. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immun 17: 593−623
6. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533−544
7. Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11: 90−96
8. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143: 1047−1058
9. Jacobson K, Liu P, Lagerholm BC (2019) The lateral organization and mobility of plasma membrane components. Cell 177:806−819
10. Zhang, Qingrong. Li, Siying. Yang, Yu, Shan, Yuping. Wang, Hongda. Studying structure and functions of cell membranes by single molecule biophysical techniques Biophys Rep 2021, 7(5):384−398 https://doi.org/10.52601/bpr.2021.210018
11. Bretscher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258: 43−49
12. Garcia-Parajo MF, Cambi A, Torreno-Pina JA, Thompson N, Jacobson K (2014) Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci 127: 4995−5005
13. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135: 1438−1444
14. Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312:228−230
15. Cooper GM. The Cell: A Molecular Approach (6th Ed.). Sunderland, MA: Sinauer, 2013.
16. Strange K. Cellular volume homeostasis. Adv Physiol Educ 28: 155–159, 2004. doi:10.1152/advan.00034.2004.
17. Dourmashkin RR, Rosse WF. Morphologic changes in the membranes of red blood cells undergoing hemolysis. Am J Med 41: 699–710, 1966. doi:10.1016/0002-9343(66)90031-3.
18. Yancey PH. Compatible and counteracting solutes. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by Strange K.Boca Raton, FL: CRC, 1994, p. 81–109.
19. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, and Haussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306, 1998.
20. Chamberlin ME and Strange K. Anisosmotic volume regulation: a comparative view. Am J Physiol Cell Physiol 257: C159–C173, 1989.
21. Lohr JW and Grantham JJ. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78: 1165–1172, 1986
22. O’Neill WC. Physiological significance of volume-regulatory transporters. Am J Physiol Cell Physiol 276: C995–C1011, 1999.
23. Emma F, McManus M, and Strange K. Intracellular electrolytes regulate the volume set point of the organic osmolyte/anion channel VSOAC. Am J Physiol Cell Physiol 272: C1766–C1775, 1997
24. REID, E. W. (1892). Preliminary report on experiments upon intestinal absorption without osmosis. British Medical Journal 2, 1133–1134.
25. MEINILD, A.-K., HIRAYAMA, B. A., WRIGHT, E. M. & LOO, D. D. F. (2002). Fluorescence studies of ligand-induced conformational changes of the Na+/glucose cotransporter. Biochemistry 41, 1250–1258
26. LOO, D. D. F., HIRAYAMA, B. A., MEINILD, A.-K., CHANDY, G., ZEUTHEN, T. & WRIGHT, E. M. (1999). Passive water and ion transport by cotransporters. Journal of Physiology 518, 195–202.
27. MEINILD, A.-K., KLAERKE, D. A., LOO, D. D. F., WRIGHT, E. M. & ZEUTHEN, T. (1998). The human Na+–glucose cotransporter is a molecular water pump. Journal of Physiology 508, 15–21.
28. ZEUTHEN, T. (2002). General models for water transport across leaky epithelia. International Review of Cytology 215, 285–319.
29. REID, E. W. (1892). Preliminary report on experiments upon intestinal absorption without osmosis. British Medical Journal 2, 1133–1134
30. M. Rózanowska , T. Sarna , E. J. Land and T. G. Truscott , Free Radical Biol. Med., 1999, 26 , 518 —525
31. Kim, Eunkyoung , Wang, Zheng. Jun Wei Phua, . Bentley, William E. Dadachova, Ekaterina, Napolitano, Alessandra, and Payne, Gregory F. Enlisting electrochemistry to reveal melanin's redox-related properties.Mat. Adv. Royal Society of Chemistry (2024) https://doi.org/10.1039/D3MA01161E
32. Herrera, A.S. (2015) The Biological Pigments in Plants Physiology. Agricultural Sciences, 6, 1262-1271. http://dx.doi.org/10.4236/as.2015.610121
33. I. Ben Tahar, M. Kus-Lis´kiewicz, Y. Lara, E. Javaux and P. Fickers, Biotechnol. Prog., 2020, 36, e2912.
34. T. Rahmani Eliato, J. T. Smith, Z. Tian, E. S. Kim, W. Hwang, C. P. Andam and Y. J. Kim, J. Mater. Chem. B, 2021, 9, 1536–1545
35. O. Al-Obeed, A. S. El-Obeid, S. Matou-Nasri, M. A. Vaali- Mohammed, Y. Alhaidan, M. Elwatidy, H. Al Dosary, Z. Alehaideb, K. Alkhayal, A. Haseeb, J. McKerrow, R. Ahmad and M. H. Abdulla, Cancer Cell Int., 2020, 20, 1–17.
36. W. Song, H. Yang, S. Liu, H. Yu, D. Li, P. Li and R. Xing, J. Mater. Chem. B, 2023, 11, 7528–7543.
37. H. Liu, Y. Yang, Y. Liu, J. Pan, J. Wang, F. Man, W. Zhang and G. Liu, Adv. Sci., 2020, 7, 1903129
38. A. S. ElObeid, A. Kamal-Eldin, M. A. K. Abdelhalim and A. M. Haseeb, Basic Clin. Pharmacol. Toxicol., 2017, 120, 515–522.
39. Pan YG, Zhang FX, Zhang LY, Liu SH, Cai MJ, Shan YP, Wang XQ, Wang HZ, Wang HD (2017) The process of wrapping virus revealed by a force tracing technique and simulations. Adv Sci4: 1600489. https://doi.org/10.1002/advs.201600489
40. Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12: 829−875
41. McManus ML and Churchwell KB. Clinical significance of cellular osmoregulation. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by Strange K. Boca Raton, FL: CRC, 1993, p. 63–77.
42. E. Kim, W. T. Leverage, Y. Liu, L. Panzella, M. L. Alfieri, A. Napolitano, W. E. Bentley and G. F. Payne, ACS Chem. Neurosci., 2016, 7, 1057–1067.
43. Z. Temocin, E. Kim, J. Li, L. Panzella, M. L. M. L. Alfieri, A. Napolitano, D. L. D. L. Kelly, W. E. W. E. Bentley and G. F. G. F. Payne, ACS Chem. Neurosci., 2017, 8, 2766–2777.