Indirect Regulation of Na+, K+-ATPase by Arachidonic Acid-Derived Eicosanoids: Participation of Eicosanoids in the Sodium Theory for Migraine

Main Article Content

Roger G. Biringer

Abstract

Migraines are a debilitating headache disorder affecting over a billion people worldwide. Migraine pathology is neurovascular. The neuroactivational aspect is strongly influenced by sodium ion concentration in the cerebrospinal fluid. Cerebrospinal fluid sodium levels' regulation primarily depends on the sodium pump Na+, K+-ATPase in the choroid plexus. The sodium theory for migraine suggests that the dysregulation of Na+, K+-ATPase in migraineurs results in elevated cerebrospinal fluid sodium, which is known to increase central sensitization, thereby predisposing these individuals to headaches.


The involvement of eicosanoids in migraine pathology is well documented. Indirect regulation of Na+, K+-ATPase by eicosanoids is documented for many tissues including the brain. The focus of this review is to identify which eicosanoids are involved in both migraine and Na+, K+-ATPase regulation in a manner consistent with the sodium theory for migraine. We believe that the identification of such eicosanoids may lead to the development of new pharmaceuticals to address migraines.

Article Details

How to Cite
BIRINGER, Roger G.. Indirect Regulation of Na+, K+-ATPase by Arachidonic Acid-Derived Eicosanoids: Participation of Eicosanoids in the Sodium Theory for Migraine. Medical Research Archives, [S.l.], v. 13, n. 1, mar. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6381>. Date accessed: 01 may 2025. doi: https://doi.org/10.18103/mra.v13i1.6381.
Section
Research Articles

References

1. Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol. 2010;23(3):266-274. doi:10.1097/WCO.0b013e32833821c1.
2. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573-594. doi:10.1177/0271678X17733655.
3. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619-6629. doi:10.1523/JNEUROSCI.0373-15.2015.
4. Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol. 2023;270(7):3654-3666. doi:10.1007/s00415-023-11706-1.
5. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006;46 Suppl 4:S182-S191. doi:10.1111/j.1526-4610.2006.00602.x.
6. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365-391. doi:10.1146/annurev-physiol-030212-183717.
7. Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31(12):1254-1265. doi:10.1177/0333102411408360.
8. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847-1892. doi:10.1152/physrev.00004.2013.
9. Ghaffari H, Grant SC, Petzold LR, Harrington MG. Regulation of cerebrospinal fluid and brain tissue sodium levels by choroid plexus and brain capillary endothelial cell sodium-potassium pumps during migraine. bioRxiv. 2019;572727.
10. Harrington MG, Fonteh AN, Cowan RP, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128-1135. doi:10.1111/j.1526-4610.2006.00445.x.
11. Gross NB, Abad N, Lichtstein D, et al. Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation. PLoS One. 2019;14(6):e0218041. doi:10.1371/journal.pone.0218041.
12. Harrington MG, Fonteh AN, Arakaki X, et al. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50(3):459-478. doi:10.1111/j.1526-4610.2009.01551.x.
13. Pietrobon D. Familial hemiplegic migraine. Neurotherapeutics. 2007;4(2):274-284. doi:10.1016/j.nurt.2007.01.008.
14. Matzner O, Devor M. Na+ conductance and the threshold for repetitive neuronal firing. Brain Res. 1992;597(1):92-98. doi:10.1016/0006-8993(92)91509-d.
15. Teriete P, Thai K, Choi J, Marassi FM. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1. Biochim Biophys Acta. 2009;1788(11):2462-2470. doi:10.1016/j.bbamem.2009.09.001.
16. Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 1995;269(2 Pt 1):C295-C311. doi:10.1152/ajpcell.1995.269.2.C295.
17. Teriete P, Franzin CM, Choi J, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry. 2007;46(23):6774-6783. doi:10.1021/bi700391b.
18. Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol. 1998;275(5):F633-F650. doi:10.1152/ajprenal.1998.275.5.F633.
19. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279(3):C541-C566. doi:10.1152/ajpcell.2000.279.3.C541.
20. Obradovic M, Stanimirovic J, Panic A, et al. Regulation of Na+/K+-ATPase by Estradiol and IGF-1 in Cardio-Metabolic Diseases. Curr Pharm Des. 2017;23(10):1551-1561. doi:10.2174/1381612823666170203113455.
21. Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311(1):E1-E31. doi:10.1152/ajpendo.00539.2015.
22. Parantainen J, Vapaatalo H, Hokkanen E (1985) Relevance of prostaglandins in migraine. Cephalalgia. 1985;5 Suppl 2:93-97. doi:10.1177/03331024850050S217.
23. Puig-Parellada P, Planas JM, Giménez J, Obach J. Migraine: implication of arachidonic acid metabolites. Prostaglandins Leukot Essent Fatty Acids. 1993;49(2):537-547. doi:10.1016/0952-3278(93)90159-t.
24. Vapaatalo H. Tolfenamic acid and migraine--aspects on prostaglandins and leukotrienes. Pharmacol Toxicol. 1994;75 Suppl 2:76-80. doi:10.1111/j.1600-0773.1994.tb02004.x.
25. Antonova M, Wienecke T, Olesen J, Ashina M. Prostaglandins in migraine: update. Curr Opin Neurol. 2013;26(3):269-275. doi:10.1097/WCO.0b013e328360864b.
26. Wienecke T, Olesen J, Oturai PS, Ashina M. Prostaglandin E2(PGE2) induces headache in healthy subjects. Cephalalgia. 2009;29(5):509-519. doi:10.1111/j.1468-2982.2008.01748.x.
27. Wienecke T, Olesen J, Oturai PS, Ashina M. Prostacyclin (epoprostenol) induces headache in healthy subjects. Pain. 2008;139(1):106-116. doi:10.1016/j.pain.2008.03.018.
28. Wienecke T, Olesen J, Ashina M. Discrepancy between strong cephalic arterial dilatation and mild headache caused by prostaglandin D₂ (PGD₂). Cephalalgia. 2011;31(1):65-76. doi:10.1177/0333102410373156.
29. Antonova M, Wienecke T, Olesen J, Ashina M. Pro-inflammatory and vasoconstricting prostanoid PGF2α causes no headache in man. Cephalalgia. 2011;31(15):1532-1541. doi:10.1177/0333102411423314.
30. Antonova M, Wienecke T, Olesen J, Ashina M. Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia. 2012;32(11):822-833. doi:10.1177/0333102412451360.
31. Wienecke T, Olesen J, Ashina M. Prostaglandin I2 (epoprostenol) triggers migraine-like attacks in migraineurs. Cephalalgia. 2010;30(2):179-190. doi:10.1111/j.1468-2982.2009.01923.x.
32. Waeber C, Moskowitz MA. Migraine as an inflammatory disorder. Neurology. 2005;64(10 Suppl 2):S9-S15. doi:10.1212/wnl.64.10_suppl_2.s9.
33. McLaughlin VV, Oudiz RJ, Frost A, et al. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006;174(11):1257-1263. doi:10.1164/rccm.200603-358OC.
34. Hildebrand M. Pharmacokinetics and tolerability of oral iloprost in thromboangiitis obliterans patients. Eur J Clin Pharmacol. 1997;53(1):51-56. doi:10.1007/s002280050336
35. Moriyama T, Higashi T, Togashi K, et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. 2005;1:3. doi:10.1186/1744-8069-1-3.
36. Nicol GD, Vasko MR, Evans AR. Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. J Neurophysiol. 1997;77(1):167-176. doi:10.1152/jn.1997.77.1.167.
37. Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol. 2001;64(4):327-363. doi:10.1016/s0301-0082(00)00063-0.
38. Chen L, Yang G, Grosser T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 2013;104-105:58-66. doi:10.1016/j.prostaglandins.2012.08.006.
39. Bley KR, Hunter JC, Eglen RM, Smith JA. The role of IP prostanoid receptors in inflammatory pain. Trends Pharmacol Sci. 1998;19(4):141-147. doi:10.1016/s0165-6147(98)01185-7.
40. Hodeify R, Chakkour M, Rida R, Kreydiyyeh S. PGE2 upregulates the Na+/K+ ATPase in HepG2 cells via EP4 receptors and intracellular calcium. PLoS One. 2021;16(1):e0245400. doi:10.1371/journal.pone.0245400.
41. Chalfoun AT, Kreydiyyeh SI. Involvement of the cytoskeleton in the effect of PGE2 on ion transport in the rat distal colon. Prostaglandins Other Lipid Mediat. 2008;85(1-2):58-64. doi:10.1016/j.prostaglandins.2007.10.008.
42. Matlhagela K, Taub M. Involvement of EP1 and EP2 receptors in the regulation of the Na,K-ATPase by prostaglandins in MDCK cells. Prostaglandins Other Lipid Mediat. 2006;79(1-2):101-113. doi:10.1016/j.prostagla ndins.2005.12.002.
43. Matlhagela K, Taub M. Prostaglandins regulate transcription by means of prostaglandin response elements located in the promoters of mammalian Na,K-ATPase beta 1 subunit genes. Ann N Y Acad Sci. 2006;1091:233-243. doi:10.1196/annals.1378.070.
44. Herman MB, Rajkhowa T, Cutuli F, Springate JE, Taub M. Regulation of renal proximal tubule Na-K-ATPase by prostaglandins. Am J Physiol Renal Physiol. 2010;298(5):F1222-F1234. doi:10.1152/ajprenal.00467.2009.
45. Cohen-Luria R, Rimon G, Moran A. PGE2 inhibits Na-K-ATPase activity and ouabain binding in MDCK cells. Am J Physiol. 1993;264(1 Pt 2):F61-F65. doi:10.1152/ajprenal.1993.264.1.F61.
46. Markovič T, Jakopin Ž, Dolenc MS, Mlinarič-Raščan I. Structural features of subtype-selective EP receptor modulators. Drug Discov Today. 2017;22(1):57-71. doi:10.1016/j.drudis.2016.08.003.
47. Rida R, Kreydiyyeh S. FTY720P inhibits the Na+/K+ ATPase in Caco-2 cells via S1PR2: PGE2 and NO are along the signaling pathway. Life Sci. 2018;215:198-206. doi:10.1016/j.lfs.2018.11.026.
48. El Moussawi L, Chakkour M, Kreydiyyeh S. The epinephrine-induced PGE2 reduces Na+/K+ ATPase activity in Caco-2 cells via PKC, NF-κB and NO. PLoS One. 2019;14(8):e0220987. doi:10.1371/journal.pone.0220987.
49. Nepal N, Arthur S, Haynes J, Palaniappan B, Sundaram U. Mechanism of Na-K-ATPase Inhibition by PGE2 in Intestinal Epithelial Cells. Cells. 2021;10(4):752. doi:10.3390/cells10040752.
50. Kreydiyyeh SI, Markossian S, Hodeify RF. PGE2 exerts dose-dependent opposite effects on net water and chloride absorption from the rat colon. Prostaglandins Other Lipid Mediat. 2006;79(1-2):43-52. doi:10.1016/j.prostaglandins.2005.07.004.
51. Zhang J, Rivest S. Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci. 1999;11(8):2651-2668. doi:10.1046/j.1460-9568.1999.00682.x.
52. Ek M, Arias C, Sawchenko P, Ericsson-Dahlstrand A. Distribution of the EP3 prostaglandin E(2) receptor subtype in the rat brain: relationship to sites of interleukin-1-induced cellular responsiveness. J Comp Neurol. 2000;428(1):5-20. doi:10.1002/1096-9861(20001204)428:1<5::aid-cne2>3.0.co;2-m.
53. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661-690. doi:10.1146/annurev.pharmtox.41.1.661.
54. Tsuboi K, Sugimoto Y, Ichikawa A. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat. 2002;68-69:535-556. doi:10.1016/s0090-6980(02)00054-0.
55. Ungrin MD, Carrière MC, Denis D, et al. Key structural features of prostaglandin E(2) and prostanoid analogs involved in binding and activation of the human EP(1) prostanoid receptor. Mol Pharmacol. 2001;59(6):1446-1456. doi:10.1124/mol.59.6.1446.
56. Sharif NA, Kelly CR, Crider JY, Williams GW, Xu SX. Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies at FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther. 2003;19(6):501-515. doi:10.1089/108076803322660422.
57. Regan JW, Bailey TJ, Donello JE, et al. Molecular cloning and expression of human EP3 receptors: evidence of three variants with differing carboxyl termini. Br J Pharmacol. 1994;112(2):377-385. doi:10.1111/j.1476-5381.1994.tb13082.x.
58. An S, Yang J, So SW, Zeng L, Goetzl EJ. Isoforms of the EP3 subtype of human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry. 1994;33(48):14496-14502. doi:10.1021/bi00252a016.
59. Adam M, Boie Y, Rushmore TH, Müller G, et al. Cloning and expression of three isoforms of the human EP3 prostanoid receptor. FEBS Lett. 1994;338(2):170-174. doi:10.1016/0014-5793(94)80358-7.
60. Chandrasekhar S, Yu XP, Harvey AK, et al. Chambers MG. Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists. Pharmacol Res Perspect. 2017;5(3):e00316. doi:10.1002/prp2.316.
61. Wilson RJ, Rhodes SA, Wood RL, et al. Functional pharmacology of human prostanoid EP2 and EP4 receptors. Eur J Pharmacol. 2004;501(1-3):49-58. doi:10.1016/j.ejphar.2004.08.025.
62. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099-3108.
63. Wienecke T, Olesen J, Ashina M. Wienecke T, Olesen J, Ashina M. Discrepancy between strong cephalic arterial dilatation and mild headache caused by prostaglandin D₂ (PGD₂). Cephalalgia. 2011;31(1):65-76. doi:10.1177/0333102410373156.
64. Chaturvedi P, Khan R, Sahu P, Ludhiadch A, Singh G, Munshi A. Role of Omics in Migraine Research and Management: A Narrative Review. Mol Neurobiol. 2022;59(9):5809-5834. doi:10.1007/s12035-022-02930-3.
65. Loonen ICM, Kohler I, Ghorasaini M, et al. Changes in plasma lipid levels following cortical spreading depolarization in a transgenic mouse model of familial hemiplegic migraine. Metabolites. 2022;12(3):220. doi:10.3390/metabo12030220.
66. Durham PL, Vause CV, Derosier F, McDonald S, Cady R, Martin V. Changes in salivary prostaglandin levels during menstrual migraine with associated dysmenorrhea. Headache. 2010;50(5):844-851. doi:10.1111/j.1526-4610.2010.01657.x.
67. Karmazyn M, Tuana BS, Dhalla NS. Effect of prostaglandins on rat heart sarcolemmal ATPases. Can J Physiol Pharmacol. 1981;59(11):1122-1127. doi:10.1139/y81-173.
68. Sharon P, Karmeli F, Rachmilewitz D. Effect of prostanoids on human intestinal Na-K-ATPase activity. Isr J Med Sci. 1984;20(8):677-680.
69. Garay R, Diez J, Braquet P. Ion transport, prostaglandins, and essential hypertension. Biomed Biochim Acta. 1984;43(8-9):S217-S221.
70. Shindo H, Tawata M, Onaya T. Cyclic adenosine 3',5'-monophosphate enhances sodium, potassium-adenosine triphosphatase activity in the sciatic nerve of streptozotocin-induced diabetic rats. Endocrinology. 1993;132(2):510-516. doi:10.1210/endo.132.2.7678791.
71. Ohno A, Kanazawa A, Tanaka A, Miwa T, Ito H. Effect of a prostaglandin I2 derivative (iloprost) on peripheral neuropathy of diabetic rats. Diabetes Res Clin Pract. 1992;18(2):123-130. doi:10.1016/0168-8227(92)90008-f.
72. Tamaoki J, Chiyotani A, Takeyama K, Yamauchi F, Tagaya E, Konno K. Relaxation and inhibition of contractile response to electrical field stimulation by Beraprost sodium in canine airway smooth muscle. Prostaglandins. 1993;45(4):363-373. doi:10.1016/0090-6980(93)90113-l.
73. Dzurba A, Ziegelhoeffer A. Increased activity of sarcolemmal (Na+K+)-ATPase is involved in the late cardioprotective action of 7-oxo-prostacyclin. Cardioscience. 1991;2(2):105-108.
74. Boie Y, Stocco R, Sawyer N, et al. Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol. 1997;340(2-3):227-241. doi:10.1016/s0014-2999(97)01383-6.
75. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1997;122(2):217-24. doi:10.1038/sj.bjp.0701367.
76. Watabe A, Sugimoto Y, Honda A, et al. Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem. 1993;268(27):20175-20178.
77. Sharif NA, Davis TL (2002) Cloned human EP1 prostanoid receptor pharmacology characterized using radioligand binding techniques. J Pharm Pharmacol. 2002;54(4):539-547. doi:10.1211/0022357021778655.
78. Fordsmann JC, Ko RW, Choi HB, et al. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex. J Neurosci. 2013;33(6):2562-2570. doi:10.1523/JNEUROSCI.2308-12.2013.
79. Fabjan A, Zaletel M, Žvan B. Is there a persistent dysfunction of neurovascular coupling in migraine? Biomed Res Int. 2015;2015:574186. doi:10.1155/2015/574186.
80. Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004;431(7005):195-199. doi:10.1038/nature02827.
81. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232-243. doi:10.1038/nature09613.
82. Shimomura T, Murakami F, Kotani K, Ikawa S, Kono S. Platelet nitric oxide metabolites in migraine. Cephalalgia. 1999;19(4):218-222. doi:10.1046/j.1468-2982.1999.019004218.x.
83. Gruber HJ, Bernecker C, Lechner A, et al. Increased nitric oxide stress is associated with migraine. Cephalalgia. 2010;30(4):486-492. doi:10.1111/j.1468-2982.2009.01964.x.
84. Shen Q, Yang J, Zamora D, et al. Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites. 2023;13(6):690. doi:10.3390/metabo13060690.
85. Zhu D, Medhora M, Campbell WB, Spitzbarth N, Baker JE, Jacobs ER. Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circulation research. 2003;92(9):992-1000.
86. Ye H, Bi HR, Lü CL, Tang XB, Zhu DL. 15-hydroxyeicosatetraenoic acid depressed endothelial nitric oxide synthase activity in pulmonary artery. Sheng Li Xue Bao. 2005;57(5):612-618.
87. Bieglmayer C, Hofer G, Kainz C, Reinthaller A, Kopp B, Janisch H. Concentrations of various arachidonic acid metabolites in menstrual fluid are associated with menstrual pain and are influenced by hormonal contraceptives. Gynecol Endocrinol. 1995;9(4):307-312. doi:10.3109/09513599509160464.
88. Krause DN, Warfvinge K, Haanes KA, Edvinsson L. Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol. 2021;17(10):621-633. doi:10.1038/s41582-021-00544-2.
89. MacGregor DP, Murone C, Song K, Allen AM, Paxinos G, Mendelsohn FA. Angiotensin II receptor subtypes in the human central nervous system. Brain Res. 1995;675(1-2):231-240. doi:10.1016/0006-8993(95)00076-3.
90. Shimpo M, Ikeda U, Maeda Y, Ohya K, Murakami Y, Shimada K. Effects of aspirin-like drugs on nitric oxide synthesis in rat vascular smooth muscle cells. Hypertension. 2000;35(5):1085-1091 doi:10.1161/01.hyp.35.5.1085.
91. Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother. 2022;156:113981. doi:10.1016/j.biopha.2022.113981.
92. Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis. 2023;180:106072 doi:10.1016/j.nbd.2023.106072.
93. Yu M, Lopez B, Dos Santos EA, Falck JR, Roman RJ. Effects of 20-HETE on Na+ transport and Na+ -K+ -ATPase activity in the thick ascending loop of Henle. Am J Physiol Regul Integr Comp Physiol. 2007;292(6):R2400-R2405. doi:10.1152/ajpregu.00791.2006.
94. Yang ZJ, Carter EL, Kibler KK, et al. Attenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor. J Neurochem. 2012;121(1):168-179. doi:10.1111/j.1471-4159.2012.07666.x.
95. Singh TU, Choudhury S, Parida S, Maruti BS, Mishra SK. Arachidonic acid inhibits Na⁺-K⁺-ATPase via cytochrome P-450, lipoxygenase and protein kinase C-dependent pathways in sheep pulmonary artery. Vascul Pharmacol. 2012;56(1-2):84-90. doi:10.1016/j.vph.2011.11.005.
96. Nowicki S, Chen SL, Aizman O, et al. 20-Hydroxyeicosa-tetraenoic acid (20 HETE) activates protein kinase C. Role in regulation of rat renal Na+,K+-ATPase. J Clin Invest. 1997;99(6):1224-1230. doi:10.1172/JCI119279.
97. Zhang B, Xu R, Fang G, Zhao Y. 20-HETE downregulates Na/K-ATPase α1 expression via the ubiquitination pathway. Prostaglandins Other Lipid Mediat. 2021;152:106503. doi:10.1016/j.prostaglandins.2020.106503.
98. Kirchheimer C, Mendez CF, Acquier A, Nowicki S. Role of 20-HETE in D1/D2 dopamine receptor synergism resulting in the inhibition of Na+-K+-ATPase activity in the proximal tubule. Am J Physiol Renal Physiol. 2007;292(5):F1435-F1442. doi:10.1152/ajprenal.00176.2006.
99. Masferrer J, Mullane KM. Modulation of vascular tone by 12(R)-, but not 12(S)-, hydroxyeicosatetraenoic acid. Eur J Pharmacol. 1988;151(3):487-490. doi:10.1016/0014-2999(88)90549-3.
100. Masferrer JL, Dunn MW, Schwartzman ML. 12(R)-hydroxyeicosatetraenoic acid, an endogenous corneal arachidonate metabolite, lowers intraocular pressure in rabbits. Invest Ophthalmol Vis Sci. 1990;31(3):535-539.
101. Masferrer JL, Rios AP, Schwartzman ML. Inhibition of renal, cardiac and corneal (Na(+)-K+)ATPase by 12(R)-hydroxyeicosatetraenoic acid. Biochem Pharmacol. 1990;39(12):1971-1974. doi:10.1016/0006-2952(90)90617-t.
102. Schwartzman ML, Balazy M, Masferrer J, Abraham NG, McGiff JC, Murphy RC.12(R)-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea. Proc Natl Acad Sci U S A. 1987;84(22):8125-8129. doi:10.1073/pnas.84.22.8125.
103. Delamere NA, Socci RR, King KL, Bhattacherjee P. The influence of 12(R)-hydroxyeicosatetraenoic acid on ciliary epithelial sodium, potassium-adenosine triphosphatase activity and intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci. 1991;32(9):2511-2514.
104. Foley TD. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity. Biochem Biophys Res Commun. 1997;235(2):374-6. doi:10.1006/bbrc.1997.6790.
105. Escalante B, Sessa WC, Falck JR, Yadagiri P, Schwartzman ML. Cytochrome P450-dependent arachidonic acid metabolites, 19- and 20-hydroxyeicosatetraenoic acids, enhance sodium-potassium ATPase activity in vascular smooth muscle. J Cardiovasc Pharmacol. 1990;16(3):438-443. doi:10.1097/00005344-199009000-00013.
106. Escalante B, Falck JR, Yadagiri P, Sun LM, Laniado-Schwartzman M. 19(S)-hydroxyeicosatetraenoic acid is a potent stimulator of renal Na+-K+-ATPase. Biochem Biophys Res Commun. 1988;152(3):1269-1274. doi:10.1016/s0006-291x(88)80422-4.
107. Ji RR. Specialized Pro-Resolving Mediators as Resolution Pharmacology for the Control of Pain and Itch. Annu Rev Pharmacol Toxicol. 2023;63:273-293. doi:10.1146/annurev-pharmtox-051921-084047.
108. Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics. 2020;17(3):886-899. doi:10.1007/s13311-020-00892-9.
109. Kocaturk I, Gulten S, Ece B, Kukul Guven FM. Exploring PGE2 and LXA4 Levels in Migraine Patients: The Potential of LXA4-Based Therapies. Diagnostics (Basel). 2024;14(6):635. doi:10.3390/diagnostics14060635.
110. Pamplona FA, Ferreira J, Menezes de Lima O Jr, et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A. 2012;109(51):21134-21139. doi:10.1073/pnas.1202906109.
111. Gado F, Meini S, Bertini S, Digiacomo M, Macchia M, Manera C. Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med Chem. 2019;11(15):2019-2037. doi:10.4155/fmc-2019-0005.
112. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2008;29(2):192-200.
113. Sarchielli P, Pini LA, Coppola F, et al. Endocannabinoids in chronic migraine: CSF findings suggest a system failure. Neuropsychopharmacology. 2007;32(6):1384-1390.
114. Henderson WR Jr. The role of leukotrienes in inflammation. Ann Intern Med. 1994;121(9):684-697. doi:10.7326/0003-4819-121-9-199411010-00010.
115. Noguchi K, Okubo M. Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull. 2011;34(8):1163-1169. doi:10.1248/bpb.34.1163.
116. Selmaj K, de Belleroche J, Das I, Rose FC. Leukotriene B4 generation by polymorphonuclear leukocytes: possible involvement in the pathogenesis of headache. Headache. 1986;26(9):460-464. doi:10.1111/j.1526-4610.1986.hed2609460.x.
117. LaMancusa R, Pulcinelli FM, Ferroni P, et al. Blood leukotrienes in headache: correlation with platelet activity. Headache. 1991;31(6):409-414. doi: 10.1111/j.1526-4610.1991.hed3106409.x.
118. Gladstone JP. Dopamine and migraine: trigeminovascular nociception, genetics and therapeutics. Cephalalgia. 2007;27(11):1315-1320. doi:10.1111/j.1468-2982.2007.01479.x
119. Mohammadian P, Hummel T, Arora C, Carpenter T. Peripheral levels of inflammatory mediators in migraineurs during headache-free periods. Headache. 2001;41(9):867-872.
120. Sheftell F, Rapoport A, Weeks R, Walker B, Gammerman I, Baskin S. Montelukast in the prophylaxis of migraine: a potential role for leukotriene modifiers. Headache. 2000;40(2):158-163. doi:10.1046/j.1526-4610.2000.00022.x.
121. Ince H, Aydin ÖF, Alaçam H, Aydin T, Azak E, Özyürek H. Urinary leukotriene E4 and prostaglandin F2a concentrations in children with migraine: a randomized study. Acta Neurol Scand. 2014;130(3):188-192. doi:10.1111/ane.12263.
122. Zhao Q, Shao L, Hu X, et al. Lipoxin a4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators Inflamm. 2013;2013:231351. doi:10.1155/2013/231351.
123. Rizk FH, Soliman NA, Kashef SM, Elsaadany AA. Lipoxin A4 attenuated dexamethasone-induced muscle atrophy via activation of PGC-1α/Nrf2/TFAM pathway. J Physiol Biochem. 2023;79(1):107-115. doi:10.1007/s13105-022-00925-1.
124. Wang Q, Lian QQ, Li R, et al. Lipoxin A(4) activates alveolar epithelial sodium channel, Na,K-ATPase, and increases alveolar fluid clearance. Am J Respir Cell Mol Biol. 2013;48(5):610-618. doi:10.1165/rcmb.2012-0274OC.
125. Wang Q, Yan SF, Hao Y, Jin SW. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome. Chin Med J (Engl). 2018;131(8):982-989. doi:10.4103/0366-6999.229890.
126. Chen F, LI R, LI L, et al. Effect of lipoxin A4 on the Na+-K+-ATPase in alveolar type Ⅱ epithelial cells of rats treated with endotoxin. Chinese Journal of Emergency Medicine. 2010:1269-1274.
127. Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. II. Role of eicosanoids. J Clin Invest. 1993;91(2):409-415. doi: 10.1172/JCI116215. PMID: 8381820; PMCID: PMC287939.
128. Sloniewsky DE, Ridge KM, Adir Y, et al. Leukotriene D4 activates alveolar epithelial Na,K-ATPase and increases alveolar fluid clearance. Am J Respir Crit Care Med. 2004;169(3):407-412. doi:10.1164/rccm.200304-472OC.
129. Nepal N, Arthur S, Butts MR, Singh S, Palaniappan B, Sundaram U. Molecular Mechanism of Stimulation of Na-K-ATPase by Leukotriene D4 in Intestinal Epithelial Cells. Int J Mol Sci. 2021 Jul;22(14):7569. doi:10.3390/ijms22147569.
130. Sanders AE, Shaikh SR, Slade GD. Long-chain omega-3 fatty acids and headache in the U.S. population. Prostaglandins Leukot Essent Fatty Acids. 2018;135:47-53. doi:10.1016/j.plefa.2018.06.008.
131. Tseng PT, Zeng BY, Chen JJ, et al. High Dosage Omega-3 Fatty Acids Outperform Existing Pharmacological Options for Migraine Prophylaxis: A Network Meta-Analysis. Adv Nutr. 2024;15(2):100163. doi:10.1016/j.advnut.2023.100163.
132. Pradalier A, Bakouche P, Baudesson G, et al. Failure of omega-3 polyunsaturated fatty acids in prevention of migraine: a double-blind study versus placebo. Cephalalgia. 2001;21(8):818-822. doi:10.1046/j.1468-2982.2001.218240.x.
133. Wang HF, Liu WC, Zailani H, et al. A 12-week randomized double-blind clinical trial of eicosapentaenoic acid intervention in episodic migraine. Brain Behav Immun. 2024;118:459-467. doi:10.1016/j.bbi.2024.03.019.
134. Pellizzon M, Buison A, Ordiz F Jr, Santa Ana L, Jen KL. Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obes Res. 2002;10(9):947-955. doi:10.1038/oby.2002.129.
135. Ramsden CE, Zamora D, Faurot KR, et al. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trial. BMJ. 2021;374:n1448. doi:10.1136/bmj.n1448.
136. Soares AA, Louçana PMC, Nasi EP, Sousa KMH, Sá OMS, Silva-Néto RP. A double- blind, randomized, and placebo-controlled clinical trial with omega-3 polyunsaturated fatty acids (OPFA ɷ-3) for the prevention of migraine in chronic migraine patients using amitriptyline. Nutr Neurosci. 2018;21(3):219-223. doi:10.1080/1028415X.2016.1266133.