The Molecular Evolution of the SARS-COV-2 Spike Protein: Study of Amino Acid Substitutions and Types
Main Article Content
Abstract
The molecular evolution of SARS-COV-2 has been challenging to predict. Emergence of the Omicron Variant of Concern (VOC) and its sublineages indicated that SARS-COV-2 could evolve more rapidly than previously thought. We analyzed the mutation and amino acid substitution patterns in the spike (S) protein of SARS-COV-2 VOCs to assess how they evolved in response to the selective pressure exerted by both natural immunity and vaccination.
Our results indicate less evolutionary constraint on the first part of the S protein, allowing more amino acid substitutions, especially in the NTD, RBD, and subdomain 1. Omicron lineages introduced mutations in the FP and HR1 domains for the first time. The NTD, subdomain 1, and FP domains allowed more radical amino acid substitutions, followed by RBD and HR1, possibly due to their function. There were up to nine conservative and one radical substitutions in the amino acids interacting with the Human ACE2 receptor in the RBM of the Omicron sublineages only, a remarkable departure from the previous VOCs.
We show that the molecular evolution of SARS-COV-2 S protein was relatively limited up to the Omicron lineage. The selective pressure from previous VOCs and global vaccination potentially accelerated the emergence of the highly transmissible Omicron lineage. This antigenic drift in Omicron is fueled by a high rate of radical amino acid substitutions in the S1 domains, resulting in positive selection with a high potential to change due to adaptive evolution. However, the conservative nature of changes in the RBM may signal a relative stabilization.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Yajima H, Tomo Nomai, Okumura K, et al. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio. 2024;15(10). doi:https://doi.org/10.1128/mbio.03220-23
3. Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 2020;41(9):1141-1149. doi:https://doi.org/10.1038/s41401-020-0485-4
4. Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2021;602:1-10. doi:https://doi.org/10.1038/s41586-021-04266-9
5. Wolf KA, Kwan JC, Kamil JP. Structural Dynamics and Molecular Evolution of the SARS-CoV-2 Spike Protein. mBio. 2022;13(2). doi:https://doi.org/10.1128/mbio.02030-21
6. Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4). doi:https://doi.org/10.1016/j.cell.2020.06.043
7. Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020;592. doi:https://doi.org/10.1038/s41586-020-2895-3
8. Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature. Published online November 24, 2021. doi:https://doi.org/10.1038/s41586-021-04245-0
9. Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266-269. doi:https://doi.org/10.1038/s41586-021-03470-x
10. Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses. 2022;14(3):640. doi:https://doi.org/10.3390/v14030640
11. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications. 2020;525(1). doi:https://doi.org/10.1016/j.bbrc.2020.02.071
12. Wang S, Xu X, Wei C, et al. Molecular evolutionary characteristics of SARS‐CoV‐2 emerging in the United States. Journal of Medical Virology. 2021;94(1):310-317. doi:https://doi.org/10.1002/jmv.27331
13. Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022;608(7923):603-608. doi:https://doi.org/10.1038/s41586-022-05053-w
14. Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022;603(7902):679-686. doi:https://doi.org/10.1038/s41586-022-04411-y
15. Kistler KE, Bedford T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e. eLife. 2021;10(33463525). doi:https://doi.org/10.7554/elife.64509
16. Gangavarapu K, Latif AA, Mullen JL, et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nature Methods. 2023;20(4):512-522. doi:https://doi.org/10.1038/s41592-023-01769-3
17. Tseung G, Mullen JL, Alkuzweny M, et al. Outbreak.info Research Library: a standardized, searchable platform to discover and explore COVID-19 resources. Nature Methods. Published online February 23, 2023. doi:https://doi.org/10.1038/s41592-023-01770-w
18. Grantham R. Amino acid difference formula to help explain protein evolution. Science (New York, NY). 1974;185(4154):862-864. doi:https://doi.org/10.1126/science.185.4154.862
19. Daichi Yamasoba, Keiya Uriu, Arnon Plianchaisuk, et al. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. Published online May 1, 2023. doi:https://doi.org/10.1016/s1473-3099(23)00278-5
20. Daichi Yamasoba, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell. 2022;185(12):2103-2115.e19. doi:https://doi.org/10.1016/j.cell.2022.04.035
21. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185(21):3992-4007.e16. doi:https://doi.org/10.1016/j.cell.2022.09.018
22. Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nature Communications. 2023;14(1):2800. doi:https://doi.org/10.1038/s41467-023-38435-3
23. Kimura I, Daichi Yamasoba, Nasser H, et al. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. Journal of virology. 2023;97(10). doi:https://doi.org/10.1128/jvi.01011-23
24. Lim H, Baek A, Kim J, et al. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein interaction obtained by density functional tight binding fragment molecular orbital method. Scientific Reports. 2020;10(1):16862. doi:https://doi.org/10.1038/s41598-020-73820-8
25. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(215–220). doi:https://doi.org/10.1038/s41586-020-2180-5
26. Kaku Y, Okumura K, Padilla-Blanco M, et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. The Lancet Infectious Diseases. 2024;24(2):e82-e82. doi:https://doi.org/10.1016/s1473-3099(23)00813-7
27. Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nature Communications. 2021;12(1):2642. doi:https://doi.org/10.1038/s41467-021-22905-7
28. Ito J, Suzuki R, Uriu K, et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nature Communications. 2023;14(1):2671. doi:https://doi.org/10.1038/s41467-023-38188-z
29. Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host & Microbe. 2022;p545-555.e4. doi:https://doi.org/10.1016/j.chom.2022.03.018
30. Tamura T, Daichi Yamasoba, Oda Y, et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. Communications biology. 2023;6(1). doi:https://doi.org/10.1038/s42003-023-05081-w
31. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280. doi:https://doi.org/10.1016/j.cell.2020.02.052
32. Lubinski B, Frazier LE, Phan MVT, Bugembe DL, Tang T, Daniel S, Cotten M, Jaimes JA, Whittaker GR. 2021. Spike protein cleavage-activation mediated by the SARS-CoV-2 P681R mutation: a case-study from its first appearance in variant of interest (VOI) A.23.1 identified in Uganda. bioRxiv doi: 10.1101/2021.06.30.450632.
33. Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences. 2021;118(29):e2104241118. doi:https://doi.org/10.1073/pnas.2104241118