Oncopigs: an inducible transgenic large animal cancer model to address pre-clinical assessments

Main Article Content

Kyle M. Schachtschneider Vera Mehta Jessicca Rege Lawrence B. Schook

Abstract

Cancer research progress has been markedly hampered by the lack of clinically relevant systems in which to study the effects of mutational interactions on cancer phenotypes. To address this, we developed an inducible transgenic Oncopig®, a unique genotypically, anatomically, metabolically, and physiologically relevant large animal model that develops inducible site and cell specific tumors for preclinical study of human cancer. The Oncopig® harbors mutations found in >50% of human cancers- KRASG12D and TP53R167H- and results in tumors that recapitulate the phenotype and physiology of human cancers. As in human disease, TERT is solely expressed in Oncopig® cancer cells, and innate Oncopig® KRASG12D and TP53R167H driver mutations are heterozygous in nature. The Oncopig® size allows utilization of the same interventional tools, such as radiological, imaging and surgical devices all employed in human clinical practice. The Oncopig® is also an ideal model for investigation of drug toxicity, as its basal metabolic rate and xenosensor pregnane X receptor homology and functionality (responsible for the metabolism of half of all prescription drugs) are also very similar to humans. In addition, we have demonstrated the ability to genetically engineer Oncopig® cell lines to facilitate the controlled addition of gene mutations in induced tumors for improved preclinical investigation of the impact of cancer phenotypes on diagnostic and therapeutic approaches. Therefore, the Oncopig Cancer Model® fulfills current unmet clinical modeling, needs as the only FDA cleared large animal cancer model, that supports device, drug and diagnostic safety, risk and efficacy studies. (238 words)

Keywords: Oncopig®, large-animal, pre-clinical, safety, and efficacy

Article Details

How to Cite
SCHACHTSCHNEIDER, Kyle M. et al. Oncopigs: an inducible transgenic large animal cancer model to address pre-clinical assessments. Medical Research Archives, [S.l.], v. 13, n. 3, mar. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6392>. Date accessed: 06 apr. 2025. doi: https://doi.org/10.18103/mra.v3i3.6392.
Section
Research Articles

References

1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. May 2021;71 (3):209-249. doi:10.3322/caac.21660

2. Honkala A, Malhotra SV, Kummar S, Junttila MR. Harnessing the predictive power of preclinical models for oncology drug development. Nature Reviews Drug Discovery. 2022/02/01 2022;21(2): 99-114. doi:10.1038/s41573-021-00301-6

3. Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. Mo Med. May-Jun 2013;110(3):207-11.

4. Onaciu A, Munteanu R, Munteanu VC, et al. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel). Aug 31 2020;10(9) doi:10.3390/diagnostics10090660

5. Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med. Jun 2021;4(2):87-103. doi:10.1002/ame2.12165

6. Schook L, Beattie C, Beever J, et al. Swine in biomedical research: creating the building blocks of animal models. Anim Biotechnol. 2005;16(2): 183-90. doi:10.1080/10495390500265034

7. Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med. Apr 2022;5(2):141-152. doi:10.1002/ame2.12223

8. Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol. Jul 2024;61(4):512-523. doi:10.1177/03009858231222235

9. Schook LB, Collares TV, Darfour-Oduro KA, et al. Unraveling the swine genome: implications for human health. Annu Rev Anim Biosci. 2015;3: 219-44. doi:10.1146/annurev-animal-022114-110815

10. Groenen MAM, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012/ 11/01 2012;491(7424):393-398. doi:10.1038/natur e11622

11. Schachtschneider KM, Schwind RM, Darfour-Oduro KA, et al. A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget. Sep 8 2017;8(38):63620-63634. doi:10.18632/oncotarget.18872

12. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. Mar 10 2005;352(10):987-96. doi:10.1056/NEJMo a043330

13. de Jong M, Maina T. Of mice and humans: are they the same?--Implications in cancer translational research. J Nucl Med. Apr 2010;51(4):501-4. doi:10.2967/jnumed.109.065706

14. Hicks WH, Bird CE, Pernik MN, et al. Large Animal Models of Glioma: Current Status and Future Prospects. Anticancer Res. Nov 2021;41 (11):5343-5353. doi:10.21873/anticanres.15347

15. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. Aug 14 2017;32(2):185-203.e13. doi:10.1016/j.cce ll.2017.07.007

16. Connor AA, Denroche RE, Jang GH, et al. Integration of Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell. Feb 11 2019;35(2):267-282.e7. doi:10.1016/j.ccel l.2018.12.010

17. Aravalli RN, Golzarian J, Cressman EN. Animal models of cancer in interventional radiology. Eur Radiol. May 2009;19(5):1049-53. doi:10.1007/s00330-008-1263-8

18. Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. Ilar j. Dec 31 2018;59(3):247-262. doi:10.1093/ilar/ily014

19. Pollock CB, Rogatcheva MB, Schook LB. Comparative genomics of xenobiotic metabolism: a porcine-human PXR gene comparison. Mamm Genome. Mar 2007;18(3):210-9. doi:10.1007/s00335-007-9007-7

20. Schook LB, Collares TV, Hu W, et al. A Genetic Porcine Model of Cancer. PLoS One. 2015;10(7):
e0128864. doi:10.1371/journal.pone.0128864

21. Elkhadragy L, Gaba RC, Niemeyer MM, Schook LB, Schachtschneider KM. Translational Relevance and Future Integration of the Oncopig® Cancer Model in Preclinical Applications. Annu Rev Anim Biosci. Oct 17 2024;doi:10.1146/annurev-animal-111523-102125

22. Joshi K, Telugu BP, Prather RS, et al. Benefits and opportunities of the transgenic Oncopig® cancer model. Trends Cancer. Mar 2024;10(3):182-184. doi:10.1016/j.trecan.2024.01.005

23. Robertson N, Schook LB, Schachtschneider KM. Porcine cancer models: potential tools to enhance cancer drug trials. Expert Opin Drug Discov. Aug 2020;15(8):893-902. doi:10.1080/17460441.2 020.1757644

24. Schachtschneider KM, Schwind RM, Newson J, et al. The Oncopig® Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front Oncol. 2017;7:190. doi:10.3389/fo nc.2017.00190

25. Lobianco F, Giurini E, Neto M, et al. 03:27 PM Abstract No. 221 Porcine and human hepatocellular carcinoma cell lines present similar drug-metabolizing enzyme expression levels and comparable sorafenib and doxorubicin cytotoxic responses. Journal of Vascular and Interventional Radiology. 2019;30 (3):S99-S100. doi:10.1016/j.jvi r.2018.12.279

26. Xu C, Wu S, Schook LB, Schachtschneider KM. Translating Human Cancer Sequences Into Personalized Porcine Cancer Models. Front Oncol. 2019;9:105. doi:10.3389/fonc.2019.00105

27. Singhal M, Khatibeghdami M, Principe DR, et al. TM4SF18 is aberrantly expressed in pancreatic cancer and regulates cell growth. PLoS One. 2019; 14(3):e0211711. doi:10.1371/journal.pone.0211711

28. Namur J, Wassef M, Millot JM, Lewis AL, Manfait M, Laurent A. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol. Feb 2010;21(2):259-67. doi:10.1016/j.jvir.2009.10.026

29. Isfort P, Rauen P, Na HS, et al. Does Drug-Eluting Bead TACE Enhance the Local Effect of IRE? Imaging and Histopathological Evaluation in a Porcine Model. Cardiovasc Intervent Radiol. Jun 2019;42(6):880-885. doi:10.1007/s00270-019-02181-1

30. Sommer CM, Arnegger F, Koch V, et al. Microwave ablation of porcine kidneys in vivo: effect of two different ablation modes ("temperature control" and "power control") on procedural outcome. Cardiovasc Intervent Radiol. Jun 2012;35(3):653-60. doi:10.1007/s00270-011-0171-5

31. Laeseke PF, Lee FT, Jr., Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. Sep 2009;20(9):1224-9. doi:10.1016/j .jvir.2009.05.029

32. Carberry GA, Nocerino E, Cristescu MM, Smolock AR, Lee FT, Jr., Brace CL. Microwave Ablation of the Lung in a Porcine Model: Vessel Diameter Predicts Pulmonary Artery Occlusion. Cardiovasc Intervent Radiol. Oct 2017;40(10): 1609-1616. doi:10.1007/s00270-017-1689-y

33. Wagstaff PG, de Bruin DM, van den Bos W, et al. Irreversible electroporation of the porcine kidney: Temperature development and distribution. Urol Oncol. Apr 2015;33(4):168.e1-7. doi:10.1016/ j.urolonc.2014.11.019

34. Swietlik JF, Mauch SC, Knott EA, et al. Noninvasive thyroid histotripsy treatment: proof of concept study in a porcine model. Int J Hyperthermia. 2021;38(1):798-804. doi:10.1080/0 2656736.2021.1922762

35. Schachtschneider K, Arepally A, Blanco D, et al. Abstract No. LBA2 Preclinical Evaluation of Yttrium-90 Radioembolization in the Oncopig® Liver Cancer Model. Journal of Vascular and Interventional Radiology. 2024;35(3):S226. doi:10.1016/j.jvir.202 4.01.016

36. Overgaard NH, Principe DR, Schachtschneider KM, et al. Genetically Induced Tumors in the Oncopig® Model Invoke an Antitumor Immune Response Dominated by Cytotoxic CD8β(+) T Cells and Differentiated γδ T Cells Alongside a Regulatory Response Mediated by FOXP3(+) T Cells and Immunoregulatory Molecules. Front Immunol. 2018;9:1301. doi:10.3389/fimmu.2018.01301

37. Elkhadragy L, Dasteh Goli K, Totura WM, et al. Effect of CRISPR Knockout of AXIN1 or ARID1A on Proliferation and Migration of Porcine Hepatocellular Carcinoma. Front Oncol. 2022;12:904031. doi:10.3389/fonc.2022.904031

38. Schachtschneider KM, Jungersen G, Schook LB, Shanmuganayagam D. Editorial: "Humanized" Large Animal Cancer Models: Accelerating Time and Effectiveness of Clinical Trials. Front Oncol. 2019;9:793. doi:10.3389/fonc.2019.00793

39. Schachtschneider KM, Liu Y, Mäkeläinen S, et al. Oncopig® Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Scientific Reports. 2017/06/01 2017;7(1):2624. doi:10.1038/s41598-017-02912-9

40. Elkhadragy L, Regan MR, W MT, et al. Generation of genetically tailored porcine liver cancer cells by CRISPR/Cas9 editing. Biotechniques. Nov 23 2020;doi:10.2144/btn-2020-0119

41. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev. 2007;31(5):728-51. doi:10.1016/j.ne ubiorev.2007.02.003

42. Selek L, Seigneuret E, Nugue G, et al. Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods. Jan 15 2014; 221:159-65. doi:10.1016/j.jneumeth.2013.10.002

43. Ho CS, Lunney JK, Lee JH, et al. Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations. Anim Genet. Aug 2010;41(4):428-32. doi:10.1111/j.1365-2052.2 010.02019.x

44. Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, et al. Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. Apr 15 2017;282:61-68. doi:10.1016/j.jneumeth.20 17.03.007

45. Khoshnevis M, Carozzo C, Brown R, et al. Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 2020; 15(6):e0234772. doi:10.1371/journal.pone.0234772

46. Tora MS, Texakalidis P, Neill S, et al. Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs. Sci Rep. Mar 24 2020;10(1):5291. doi:10.1038/s41598-020-62167-9

47. Gaba RC, Mendoza-Elias N, Regan DP, et al. Characterization of an Inducible Alcoholic Liver Fibrosis Model for Hepatocellular Carcinoma Investigation in a Transgenic Porcine Tumorigenic Platform. J Vasc Interv Radiol. Aug 2018;29(8): 1194-1202.e1. doi:10.1016/j.jvir.2018.03.007

48. Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie. Mar 2021;182:73-84. doi:10.1016/j.biochi.2020.12.022

49. Boettcher AN, Schachtschneider KM, Schook LB, Tuggle CK. Swine models for translational oncological research: an evolving landscape and regulatory considerations. Mamm Genome. Mar 2022;33(1):230-240. doi:10.1007/s00335-021-09907-y

50. Ye M, Misra SK, De AK, et al. Design, Synthesis, and Characterization of Globular Orphan Nuclear Receptor Regulator with Biological Activity in Soft Tissue Sarcoma. J Med Chem. Dec 13 2018; 61(23):10739-10752. doi:10.1021/acs.jmedchem.8 b01387

51. Nurili F, Monette S, Michel AO, et al. Transarterial Embolization of Liver Cancer in a Transgenic Pig Model. Journal of Vascular and Interventional Radiology. 2021/04/01/ 2021;32(4): 510-517.e3. doi:https://doi.org/10.1016/j.jvir.2020.09.011

52. Gaba RC, Elkhadragy L, Boas FE, et al. Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation. Oncotarget. Jul 14 2020; 11(28):2686-2701. doi:10.18632/oncotarget.27647

53. Misra SK, Ghoshal G, Gartia MR, et al. Trimodal Therapy: Combining Hyperthermia with Repurposed Bexarotene and Ultrasound for Treating Liver Cancer. ACS Nano. Nov 24 2015;9(11):10 695-10718. doi:10.1021/acsnano.5b05974

54. Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. May 2021;18(5): 293-313. doi:10.1038/s41575-020-00395-0

55. Patel SS, Sandur A, El-Kebir M, Gaba RC, Schook LB, Schachtschneider KM. Transcriptional Profiling of Porcine HCC Xenografts Provides Insights Into Tumor Cell Microenvironment Signaling. Front Genet. 2021;12:657330. doi:10.3389/fgen e.2021.657330

56. Pirasteh A, Periyasamy S, Meudt JJ, et al. Staging Liver Fibrosis by Fibroblast Activation Protein Inhibitor PET in a Human-Sized Swine Model. J Nucl Med. Dec 2022;63(12):1956-1961. doi:10.2967/jnumed.121.263736

57. Gaba RC, Elkhadragy L, Pennix T, et al. Magnetic Resonance Elastography for Staging Liver Fibrosis in the Oncopig®. Diagnostics (Basel). Aug 28 2024;14(17) doi:10.3390/diagnostics14171880

58. Faraji F, Gaba RC. Radiologic Modalities and Response Assessment Schemes for Clinical and Preclinical Oncology Imaging. Front Oncol. 2019; 9:471. doi:10.3389/fonc.2019.00471

59. Lin KT, Shann YJ, Chau GY, Hsu CN, Huang CY. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene. Sep 25 2014;33(39):4786-94. doi:10.1038/onc.2013.424

60. Jaroch DB, Liu Y, Kim AY, Katz SC, Cox BF, Hullinger TG. Intra-arterial Pressure-Enabled Drug Delivery Significantly Increases Penetration of Glass Microspheres in a Porcine Liver Tumor Model. J Vasc Interv Radiol. Oct 2024;35(10):1525-1533.e4. doi:10.1016/j.jvir.2024.06.030

61. Rund LA, Ghoshal G, Williams E, et al. Abstract 2148: Image-guided catheter-based ultrasound thermal ablation of intramuscular and retroperitoneal sarcomas in the transgenic Oncopig® cancer model. Cancer Research. 2018;78(13_Supplement):2148-2148. doi:10.1158/1538-7445.Am2018-2148

62. Rund LA, Schachtschneider KM, Gaba RC, et al. Abstract 3105: Oncopig® carcinoma cell lines: A foundation for co-clinical trials. Cancer Research. 2018;78(13 Supplement):3105-3105. doi:10.1158/1 538-7445.Am2018-3105

63. O'Connell RM, Horne S, O'Keeffe DA, et al. A novel low-cost high-fidelity porcine model of liver metastases for simulation training in robotic parenchyma-preserving liver resection. J Robot Surg. Nov 5 2024;18(1):394. doi:10.1007/s11701-024-02151-x

64. Ghosn M, Elsakka AS, Petre EN, et al. Induction and preliminary characterization of neoplastic pulmonary nodules in a transgenic pig model. Lung Cancer. Apr 2023;178:157-165. doi:10.1016/j.lungcan.2023.02.013

65. Aulitzky A VBR, Kim K, Al-Ahmadie H, Monette S, Coleman JA. MP14-02 DEVELOPMENT OF A PORCINE MODEL OF BLADDER CANCER USING THE ONCOPIG®. Journal of Urology. 2023; 209(Supplement 4):e182. doi:10.1097/JU.0000000 000003234.02

66. Segatto NV, Bender CB, Seixas FK, et al. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci. 2021;8:681044. doi:10.3389/fmolb.2021.681044

67. Oh D, Hong N, Eun K, et al. Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination. Sci Rep. Jan 10 2025;15(1): 1616. doi:10.1038/s41598-024-82554-w

68. Rice SL, Muñoz FG, Benjamin J, et al. Transcatheter pseudo-vascular isolation for localization and concentration of a large molecule theranostic probe into a transgenic Oncopig® kidney tumor. Nucl Med Biol. Sep-Oct 2024;136-137:108939. doi:10.1016/j.nucmedbio.2024.108939

69. Yano H, Sasaki F, Maeda H, et al. Effect of sprayable, highly adhesive hydrophobized gelatin microparticles on esophageal stenosis after endoscopic submucosal dissection: an experimental study in a swine model. Esophagus. Jan 2025;22 (1):95-104. doi:10.1007/s10388-024-01090-8

70. Rugivarodom M, Sonani H, Kamba S, Kee Song LW, Graham R, Rajan E. CREATING A PORCINE MODEL FOR COLORECTAL CANCER AND ASSESSING THE EFFICACY AND SAFETY OF ELECTROPORATION TREATMENT. Gastrointestinal Endoscopy. 2024;99(6):AB452-AB453. doi:10.1016/j.g ie.2024.04.1426

71. Ganepola GA, Nizin J, Rutledge JR, Chang DH. Use of blood-based biomarkers for early diagnosis and surveillance of colorectal cancer. World J Gastrointest Oncol. Apr 15 2014;6(4):83-97. doi:10.4251/wjgo.v6.i4.83

72. Lou J, Zhang L, Lv S, Zhang C, Jiang S. Biomarkers for Hepatocellular Carcinoma. Biomark Cancer. 2017;9:1-9. doi:10.1177/1179299x16684640

73. Boas FE, Nurili F, Bendet A, et al. Induction and characterization of pancreatic cancer in a transgenic pig model. PLoS One. 2020;15(9):e02 39391. doi:10.1371/journal.pone.0239391

74. Mondal P, Patel NS, Bailey K, et al. Induction of pancreatic neoplasia in the KRAS/TP53 Oncopig®. Dis Model Mech. Jan 1 2023;16(1) doi:10.1242/dm m.049699

75. Principe DR, Overgaard NH, Park AJ, et al. KRAS(G12D) and TP53(R167H) Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs. Sci Rep. Aug 22 2018;8(1):12548. doi:10.1038/s41598-018-30916-6