OSTEOPOROSIS: Genetic Risk Factors in the New Therapies. Challenges for Personalized Treatments

Main Article Content

Alejandra Villagomez-Vega Ismael Nuño-Arana

Abstract

The word osteoporosis means “porous bone” a disease that is defined as a skeletal disorder characterized by alterations in its microarchitecture making the bones more porous and less dense, leading to a decrease in bone strength, generating a greater risk of fractures.


It is a disease considered among the greatest public health problems in the elderly population worldwide, affecting women to a greater extent; around a third of women suffer from osteoporosis and one in eight men over 50 years of age.


Known as a silent disease because significant signs do not appear before fractures appear, so in most cases, people realize they have osteoporosis until they suffer a fracture. Osteoporotic fractures have various risk factors, from low physical activity, smoking, and the use of certain drugs, as well as genetic variations that have been associated with diverse types of fractures.


There is a considerable group of drugs to treat the disease, however, management is only focused on monotherapy according to the quantitative value of a phenotype (BMD) bone mineral density. It has never focused on individual pathophysiology, since it was unknown. The main treatment guidelines for osteoporosis include a bisphosphonate and it is maintained for years depending on response, in addition to lifestyle and dietary recommendations. However, a controversial aspect is the low response to treatment, which is accompanied by poor adherence to treatments.


The new drugs that have more intense and prolonged effects are expensive and are not available in most countries. Much progress has been made in terms of knowledge of the factors that contribute to the development of this and other pathologies. Diversity of variations in the genome has been implicated both in the development of the disease and in the response to pharmacological treatments.


Many of these variations in the genome and its expression represent part of the genetic factors that contribute to the development of the disease. They are now important biomarkers that allow us to better understand and develop more specific drugs or individualized schemes with those already existing. There are already various scores and indications of first guidelines on how to quantify these factors, such as the Polygenic Risk Score (PRS) or Mendelian Randomization (MR). However, there is still a need to analyze and expand the perspectives of how the factors involved interact without being specifically additive/summative, and the difficulties that this face have already been observed.


The aims of this brief review are to discuss shortly the actual drugs approved for osteoporosis by the main treatment guidelines. The advances in molecular biology studies that support the importance of genetic factors in risk and response to osteoporosis treatment.

Keywords: Osteoporosis, Risk Factors, Classic and New Treatments, Challenges in Treatments

Article Details

How to Cite
VILLAGOMEZ-VEGA, Alejandra; NUÑO-ARANA, Ismael. OSTEOPOROSIS: Genetic Risk Factors in the New Therapies. Challenges for Personalized Treatments. Medical Research Archives, [S.l.], v. 13, n. 4, apr. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6413>. Date accessed: 15 may 2025. doi: https://doi.org/10.18103/mra.v13i4.6413.
Section
Research Articles

References

1. Lei C, Song JH, Li S, et al. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials. 2023;296:122066. doi:10.1016/j.biomaterials.2023.122066
2. Yong EL, Logan S. Menopausal osteoporosis: screening, prevention and treatment. Singapore Med J. 2021;62(4):159-166. doi:10.11622/smedj.2021 036
3. He J, Xu S, Zhang B, et al. Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY). 2020;12(9):8583-8604. doi:10.18632/aging.103168
4. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133(1):105-117. doi:10.1093/bmb/ldaa005
5. Muñoz M, Robinson K, Shibli-Rahhal A. Bone Health and Osteoporosis Prevention and Treatment. Clin Obstet Gynecol. 2020;63(4):770-787. doi:10.1097/ GRF.0000000000000572
6. Subarajan P, Arceo-Mendoza RM, Camacho PM. Postmenopausal Osteoporosis: A Review of Latest Guidelines. Endocrinol Metab Clin North Am. 2024;53(4):497-512. doi:10.1016/j.ecl.2024.08.008
7. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet. 2019 Jun 22;393(10190):e44. doi:10.1016/S0140-6736(19) 31047-5.]. Lancet. 2018;392(10159):1789-1858. doi:10.1016/S0140-6736(18)32279-7
8. Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther. 2008;12(3):157-170. doi:10.1007/BF03256280
9. Migliorini F, Maffulli N, Spiezia F, Tingart M, Maria PG, Riccardo G. Biomarkers as therapy monitoring for postmenopausal osteoporosis: a systematic review. J Orthop Surg Res. 2021 May 18;16(1):318. doi: 10.1186/s13018-021-02474-7. PMID: 34006294; PMCID: PMC8130375.
10. Morales-Santana S, Díez-Pérez A, Olmos JM, et al. Circulating sclerostin and estradiol levels are associated with inadequate response to bisphosphonates in postmenopausal women with osteoporosis. Maturitas. 2015;82(4):402-410. doi:10.1016/j.maturitas.2015.08.007
11. Marozik P, Alekna V, Rudenko E, et al. Bone metabolism genes variation and response to bisphosphonate treatment in women with postmenopausal osteoporosis. PLoS One. 2019;14(8):e0221511. Published 2019 Aug 22. doi:10.1371/journal.pone.0221511
12. Srivastava RK, Sapra L. The Rising Era of "Immunoporosis": Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res. 2022;15:1667-1698. Published 2022 Mar 5. doi:10.2147/JIR.S351918
13. Chen H, Senda T, Kubo KY. The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol. 2015;48(2):61-68. doi:10.1007/s00795-015-0099-y
14. Nakashima T. Clin Calcium. 2015;25(1):21-28.
15. Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda). 2016;31(3):233-245. doi:10.1152/physiol.00061.2014
16. Weitzmann MN. Bone and the Immune System. Toxicol Pathol. 2017;45(7):911-924. doi:10.1177/0192623317735316
17. Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science. 1972;177(4051):793-795. doi:10.1126/science.177.4051.793
18. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29(5):555-567. doi:10.1007/s10875-009-9316-6
19. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol. 2018;9:657. Published 2018 Apr 5. doi:10.3389/fimmu.2018.00657
20. Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016;87:130-135. doi:10.1016/j.bone.2016.03.016
21. Xia B, Li Y, Zhou J, Tian B, Feng L. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res. 2017;6(12):640-648. doi:10.1302/2046-3758.612.BJR-2017-0102.R1
22. Aspray TJ, Hill TR. Osteoporosis and the Ageing Skeleton. Subcell Biochem. 2019;91:453-476. doi:10.1007/978-981-13-3681-2_16
23. Clark GR, Duncan EL. The genetics of osteoporosis. Br Med Bull. 2015;113(1):73-81. doi:10.1093/bmb/ldu042
24. Rocha-Braz MG, Ferraz-de-Souza B. Genetics of osteoporosis: searching for candidate genes for bone fragility. Arch Endocrinol Metab. 2016;60(4):391-401. doi:10.1590/2359-3997000000178
25. Zhu X, Bai W, Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9(1):23. Published 2021 Apr 29. doi:10.1038/s41413-021-00143-3
26. Richards JB, Kavvoura FK, Rivadeneira F, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528-537. doi:10.7326/0003-4819-151-8-200910200-00006
27. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice [published correction appears in Nat Genet. 2019 May;51(5):920. doi: 10.1038/s41588-019-0415-x.]. Nat Genet. 2019;51(2):258-266. doi:10.1038/s41588-018-0302-x
28. Riancho JA, Sañudo C, Valero C, et al. Association of the aromatase gene alleles with BMD: epidemiological and functional evidence. J Bone Miner Res. 2009;24(10):1709-1718. doi:10.1359/jbmr.090404
29. Urano T, Inoue S. Genetics of osteoporosis. Biochem Biophys Res Commun. 2014;452(2):287-293. doi:10.1016/j.bbrc.2014.07.141
30. Zupan J, Mencej-Bedrac S, Jurković-Mlakar S, Prezelj J, Marc J. Gene-gene interactions in RANK/RANKL/OPG system influence bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol. 2010;118(1-2):102-106. doi:10.1016/j.jsbmb.2009.10.013
31. Moffett, S., Oakley, J., Cauley, J., Lui, L., Ensrud, K., Taylor, B., et. al.(2008). Osteoprotegerin Lys3Asn Polymorphism and the Risk of Fracture in Older Women. J Clin Endocrinol Metab., 93(5):2002–2008. doi: 10.1210/jc.2007-1019
32. Vilariño-Güell C, Miles LJ, Duncan EL, et al. PTHR1 polymorphisms influence BMD variation through effects on the growing skeleton. Calcif Tissue Int. 2007;81(4):270-278. doi:10.1007/s00223-007-9072-7
33. Xiao X, Roohani D, Wu Q. Genetic profiling of decreased bone mineral density in an independent sample of Caucasian women. Osteoporos Int. 2018;29(8):1807-1814. doi:10.1007/s00198-018-4546-1
34. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355-2365. doi:10.1056/NEJMoa0801197
35. Eriksson J, Evans DS, Nielson CM, et al. Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res. 2015;30(1):184-194. doi:10.1002/jbmr.2314
36. Ho-Le TP, Pham HM, Center JR, Eisman JA, Nguyen HT, Nguyen TV. Prediction of changes in bone mineral density in the elderly: contribution of "osteogenomic profile". Arch Osteoporos. 2018;13(1):68. Published 2018 Jun 21. doi:10.1007/s11657-018-0480-2
37. Nguyen TV. Individualized Assessment of Fracture Risk: Contribution of "Osteogenomic Profile". J Clin Densitom. 2017;20(3):353-359. doi:10.1016/j.jocd.2017.06.021
38. Compston J, Cooper A, Cooper C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. doi:10.1007/s11657-017-0324-5
39. Qaseem A, Forciea MA, McLean RM, et al. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians [published correction appears in Ann Intern Med. 2017 Sep 19;167(6):448. doi: 10.7326/L17-0463.]. Ann Intern Med. 2017;166(11):818-839. doi:10.7326/M15-1361
40. Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women [published correction appears in Osteoporos Int. 2020 Jan;31(1):209. doi: 10.1007/s00198-019-05184-3.] [published correction appears in Osteoporos Int. 2020 Apr;31(4):801. doi: 10.1007/s00198-020-05303-5.]. Osteoporos Int. 2019;30(1):3-44. doi:10.1007/s00198-018-4704-5
41. Chandran M, Mitchell PJ, Amphansap T, et al. Development of the Asia Pacific Consortium on Osteoporosis (APCO) Framework: clinical standards of care for the screening, diagnosis, and management of osteoporosis in the Asia-Pacific region [published correction appears in Osteoporos Int. 2021 Jul;32(7):1277-1278. doi: 10.1007/s00198-021-05953-z.]. Osteoporos Int. 2021;32(7):1249-1275. doi:10.1007/s00198-020-05742-0
42. Miedany Y, Paruk F, Kalla A, et al. Consensus evidence-based clinical practice guidelines for the diagnosis and treat-to-target management of osteoporosis in Africa: an initiative by the African Society of Bone Health and Metabolic Bone Diseases. Arch Osteoporos. 2021;16(1):176. Published 2021 Nov 18. doi:10.1007/s11657-021-01035-z
43. Chin KY, Ng BN, Rostam MKI, et al. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J Clin Med. 2022;11(21):6434. Published 2022 Oct 30. doi:10.3390/jcm11216434
44. Mundy GR. Osteoporosis: pathophysiology and non-pharmacological management. Best Pract Res Clin Rheumatol. 2001;15(5):727-745. doi:10.1053/berh.2001.0190
45. Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne). 2022;13:945310. Published 2022 Aug 5. doi:10.3389/fendo.2022.945310
46. Iantomasi T, Romagnoli C, Palmini G, et al. Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci. 2023;24(4):3772. Published 2023 Feb 14. doi:10.3390/ijms24043772
47. Adler RA, El-Hajj Fuleihan G, Bauer DC, et al. Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of the American Society for Bone and Mineral Research [published correction appears in J Bone Miner Res. 2016 Oct;31(10):1910. doi: 10.1002/jbmr.2918.]. J Bone Miner Res. 2016;31(1):16-35. doi:10.1002/jbmr.2708
48. Camacho PM, Petak SM, Binkley N, et al. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS/AMERICAN COLLEGE OF ENDOCRINOLOGY CLINICAL PRACTICE GUIDELINES FOR THE DIAGNOSIS AND TREATMENT OF POSTMENOPAUSAL OSTEOPOROSIS-2020 UPDATE. Endocr Pract. 2020;26(Suppl 1):1-46. doi:10.4158/GL-2020-0524SUPPL
49. Gregson CL, Armstrong DJ, Bowden J, et al. UK clinical guideline for the prevention and treatment of osteoporosis [published correction appears in Arch Osteoporos. 2022 May 19;17(1):80. doi: 10.1007/s11657-022-01115-8.]. Arch Osteoporos. 2022;17(1):58. Published 2022 Apr 5. doi:10.1007/s11657-022-01061-5
50. Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women [published correction appears in Osteoporos Int. 2020 Jan;31(1):209. doi: 10.1007/s00198-019-05184-3.] [published correction appears in Osteoporos Int. 2020 Apr;31(4):801. doi: 10.1007/s00198-020-05303-5.]. Osteoporos Int. 2019;30(1):3-44. doi:10.1007/s00198-018-4704-5
51. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician's guide to prevention and treatment of osteoporosis [published correction appears in Osteoporos Int. 2022 Oct;33(10):2243. doi: 10.1007/s00198-022-06479-8.]. Osteoporos Int. 2022;33(10):2049-2102. doi:10.1007/s00198-021-05900-y
52. López-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol. 2016;12(4):389-398. doi:10.1517/17425255.2016.1154533
53. Xiao SM, Lei SF, Deng HW. Genetic determination of osteoporosis in Chinese. Chin Med J (Engl). 2005;118(24):2077-2088.
54. Zhou PR, Xu XJ, Zhang ZL, et al. SOST polymorphisms and response to alendronate treatment in postmenopausal Chinese women with osteoporosis. Pharmacogenomics. 2015;16(10):1077-1088. doi:10.2217/pgs.15.76
55. Mencej-Bedrač S, Zupan J, Mlakar SJ, Zavratnik A, Preželj J, Marc J. Raloxifene pharmacodynamics is influenced by genetic variants in the RANKL/RANK/OPG system and in the Wnt signaling pathway. Drug Metabol Drug Interact. 2014;29(2):111-114. doi:10.1515/dmdi-2013-0066
56. Wang WJ, He JW, Fu WZ, Wang C, Zhang ZL. Genetic Polymorphisms of Nuclear Factor-κB Family Affect the Bone Mineral Density Response to Zoledronic Acid Therapy in Postmenopausal Chinese Women. Genes (Basel). 2022;13(8):1343. Published 2022 Jul 27. doi:10.3390/genes13081343
57. Duncan L, Shen H, Gelaye B, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10(1):3328. Published 2019 Jul 25. doi:10.1038/s41467-019-11112-0
58. Williams J, Chen T, Hua X, et al. Integrating Common and Rare Variants Improves Polygenic Risk Prediction Across Diverse Populations. medRxiv preprint. Published 2024 Nov 5. doi.org/10.1101/2024.11.05.24316779
59. Moreno-Grau S, Vernekar M, Lopez-Pineda A, et al. Polygenic risk score portability for common diseases across genetically diverse populations. Hum Genomics. 2024;18(1):93. Published 2024 Sep 2. doi:10.1186/s40246-024-00664-y
60. Gallagher JC, Rosen CJ, Chen P, Misurski DA, Marcus R. Response rate of bone mineral density to teriparatide in postmenopausal women with osteoporosis. Bone. 2006;39(6):1268-1275. doi:10.1016/j.bone.2006.06.007
61. Sebba AI. Significance of a decline in bone mineral density while receiving oral bisphosphonate treatment [published correction appears in Clin Ther. 2008 Jun;30(6):1177-8]. Clin Ther. 2008;30(3):443-452. doi:10.1016/j.clinthera.2008.03.008
62. Cairoli E, Eller-Vainicher C, Ulivieri FM, et al. Factors associated with bisphosphonate treatment failure in postmenopausal women with primary osteoporosis. Osteoporos Int. 2014;25(4):1401-1410. doi:10.1007/s00198-014-2619-3
63. Villagómez Vega A, Gámez Nava JI, Ruiz González F, Pérez Romero M, Trujillo Rangel WÁ, Nuño Arana I. Influence of the Osteogenomic Profile in Response to Alendronate Therapy in Postmenopausal Women with Osteoporosis: A Retrospective Cohort Study. Genes (Basel). 2023;14(2):524. Published 2023 Feb 19. doi:10.3390/genes14020524
64. Ferbebouh M, Vallières F, Benderdour M, Fernandes J. The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res. 2021;70(8):859-875. doi:10.1007/s00011-021-01484-9