Personalized Health Through Epigenetics: The Lifestylopathy Approach

Main Article Content

Jawad Alzeer, PhD

Abstract

The interaction between epigenetics and lifestyle has revolutionized the understanding of personalized health, shifting the focus from genetic determinism to modifiable gene expression. This manuscript explores Lifestylopathy, a holistic framework that integrates biological, psychological, and environmental factors to optimize gene regulation, metabolic balance, and long-term health outcomes. By leveraging epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNA interactions, this approach highlights how structured lifestyle interventions can actively shape gene expression to enhance immune resilience, cognitive stability, and disease prevention. Lifestylopathy classifies potential energy into four key domains; chemical, elastic, mental, and voluntary energy, which collectively influence cellular function, stress adaptation, and healing processes. Furthermore, this model proposes a balance between potential energy, represented by structure, and entropy, represented by adaptive flexibility, both of which are essential for optimal biological function. While the therapeutic potential of lifestyle-driven epigenetic modulation is promising, further research is needed to develop measurable biomarkers for non-physical energy domains, assess the long-term impact of voluntary behaviors on genetic expression, and address socioeconomic disparities affecting health optimization. By integrating Lifestylopathy principles into preventive healthcare and public policy, this framework has the potential to redefine personalized medicine, offering a sustainable and inclusive model for long-term well-being.

Keywords: Lifestylopathy, Epigenetics, Personalized Medicine, , Gene Expression, Potential Energy, Entropy, Health Optimization

Article Details

How to Cite
ALZEER, Jawad. Personalized Health Through Epigenetics: The Lifestylopathy Approach. Medical Research Archives, [S.l.], v. 13, n. 4, apr. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6435>. Date accessed: 15 may 2025. doi: https://doi.org/10.18103/mra.v13i4.6435.
Section
Research Articles

References

1. Zhang M, Ward J, Strawbridge R, Celis‐Morales C, Pell J, Lyall D, et al. How do lifestyle factors modify the association between genetic predisposition and obesity-related phenotypes? A 4-way decomposition analysis using UK Biobank. BMC Med. 2024;22(1). https://doi.org/10.1186/s12916-024-03436-6.
2. Liu J. Unveiling the dominant influence: genetic status and lifestyle factors in cardiovascular health. Theor Nat Sci. 2024;54(1):116-121. https://doi.org/10.54254/2753-8818/54/2024au0146.
3. Norwitz N, Saif N, Ariza I, Isaacson R. Precision nutrition for Alzheimer’s prevention in APOE4 carriers. Nutrients. 2021;13(4):1362. https://doi.org/10.3390/nu13041362.
4. Zhang T, Meaney M. Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol. 2010;61(1):439-466. https://doi.org/10.1146/annurev.psych.60.110707.163625.
5. Dauncey M. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients. 2013;5(3):887-914. https://doi.org/10.3390/nu5030887.
6. Rajpathak S, Liu Y, Ben‐David O, Reddy S, Atzmon G, Crandall J, et al. Lifestyle factors of people with exceptional longevity. J Am Geriatr Soc. 2011;59(8):1509-1512. https://doi.org/10.1111/j.1532-5415.2011.03498.x.
7. Dauncey M. Recent advances in nutrition, genes and brain health. Proc Nutr Soc. 2012;71(4):581-591. https://doi.org/10.1017/s0029665112000237.
8. Alzeer J. Lifestylopathy as personalized medicine: a holistic approach to health. Med Res Arch. 2025;13(1). https://doi.org/10.18103/mra.v13i1.6209.
9. Nutt D. Addiction: lifestyle choice or medical diagnosis? J Eval Clin Pract. 2013;19(3):493-496. https://doi.org/10.1111/jep.12045.
10. Gillsjö C, Karlsson S, Ståhl F, Eriksson I. Lifestyle's influence on community-dwelling older adults' health: a mixed-methods study design. Contemp Clin Trials Commun. 2021;21:100687. https://doi.org/10.1016/j.conctc.2020.100687.
11. Reddy O, Werf Y. The sleeping brain: harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):868. https://doi.org/10.3390/brainsci10110868.
12. Dauncey M. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr. 2014;68(11):1179-1185. https://doi.org/10.1038/ejcn.2014.173.
13. Meng W, Adams M, Deary I, Palmer C, McIntosh A, Smith B. Genetic correlations between pain phenotypes and depression and neuroticism. 2018. https://doi.org/10.1101/362574.
14. Moore L, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2012;38(1):23-38. https://doi.org/10.1038/npp.2012.112.
15. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133-a019133. https://doi.org/10.1101/cshperspect.a019133.
16. Reddy M, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int. 2015;88(2):250-261. https://doi.org/10.1038/ki.2015.148.
17. Lima R, Hayashi D, Lima K, Gomes N, Ribeiro M, Prada P, et al. The role of epigenetics in the etiology of obesity: a review. J Clin Epigenetics. 2017;3(4). https://doi.org/10.21767/2472-1158.100075.
18. Tarale P, Chakrabarti T, Sivanesan S, Naoghare P, Bafana A, Krishnamurthi K. Potential role of epigenetic mechanism in manganese-induced neurotoxicity. Biomed Res Int. 2016;2016:1-18. https://doi.org/10.1155/2016/2548792.
19. Fransquet P, Wrigglesworth J, Woods R, Ernst M, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics. 2019;11(1). https://doi.org/10.1186/s13148-019-0656-7.
20. Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharma-cology. 2016;41(1):261-274. https://doi.org/10.1038/npp.2015.235.
21. Brivio P, Sbrini G, Tarantini L, Parravicini C, Gruca P, Łasoń M, et al. Stress modifies the expression of glucocorticoid-responsive genes by acting at epigenetic levels in the rat prefrontal cortex: modulatory activity of lurasidone. Int J Mol Sci. 2021;22(12):6197. https://doi.org/10.3390/ijms22126197.
22. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49(4):e322-e322. https://doi.org/10.1038/emm.2017.10.
23. MacKinnon A, Feeley N, Gold I, Hayton B, King L, Nagy C, et al. The interaction between oxytocin re-ceptor gene methylation and maternal behavior on children's early theory of mind abilities. Dev Psychopathol. 2019;32(2):511-519. https://doi.org/10.1017/s0954579419000257.
24. Hing B, Braun P, Cordner Z, Ewald E, Moody L, McKane M, et al. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics. 2018;13(6):627-641. https://doi.org/10.1080/15592294.2018.1486654.
25. Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev. 2017;80:443-456. https://doi.org/10.1016/j.neubiorev.2017.06.012.
26. Nilsson E, Skinner M. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res. 2015;165(1):12-17. https://doi.org/10.1016/j.trsl.2014.02.003.
27. Alzeer J. Integrating medicine with lifestyle for personalized and holistic healthcare. J Public Health Emerg. 2023;7:33. https://doi.org/10.21037/jphe-23-71.
28. Alzeer J. Lifestylopathy: unlocking potential by embracing duality and homeostasis for improved healthcare. Int J Regen Med. 2023;1-6. https://doi.org/10.31487/j.rgm.2023.02.02.
29. Alzeer J. Entropy and potential energy as a key role of halalopathy in disease prevention and cure. Longhua Chin Med. 2020;3:20-20. https://doi.org/10.21037/lcm-20-40.
30. Alzeer J. Halalopathy: stimulation of the immune system through enrichment of potential energy. Int J Regen Med. 2022;1-5. https://doi.org/10.31487/j.rgm.2022.01.02.
31. Alzeer, J. (2023). The role of buffers in establishing a balance of homeostasis and maintaining health. American Journal of Medical Chemistry, 1, 1–6. https://doi.org/10.31487/j.ajmc.2023.01.01
32. Horrigan B, Lewis S, Abrams D, Pechura C. (2012). Integrative medicine in America—how integrative medicine is being practiced in clinical centers across the United States. Global Advances in Health and Medicine, 1(3), 18–52. https://doi.org/10.7453/gahmj.2012.1.3.006
33. Waterland R. (2012). Nutritional epigenetics. N/A, 14–26. https://doi.org/10.1002/9781119946045.ch2
34. Park L, Friso S, Choi S. (2011). Nutritional influences on epigenetics and age-related disease. Proceedings of the Nutrition Society, 71(1), 75–83. https://doi.org/10.1017/s0029665111003302
35. Decourcelle A, Leprince D, Dehennaut V. (2019). Regulation of polycomb repression by O-GlcNAcylation: Linking nutrition to epigenetic reprogramming in embryonic development and cancer. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00117
36. Haggarty P. (2013). Epigenetic consequences of a changing human diet. Proceedings of the Nutrition Society, 72(4), 363–371. https://doi.org/10.1017/s0029665113003376
37. Ideraabdullah F, Zeisel S. (2018). Dietary modulation of the epigenome. Physiological Reviews, 98(2), 667–695. https://doi.org/10.1152/physrev.00010.2017
38. Hino S, Nagaoka K, Nakao M. (2013). Metabolism–epigenome crosstalk in physiology and diseases. Journal of Human Genetics, 58(7), 410–415. https://doi.org/10.1038/jhg.2013.57
39. Tiffon C. (2018). The impact of nutrition and environmental epigenetics on human health and disease. International Journal of Molecular Sciences, 19(11), 3425. https://doi.org/10.3390/ijms19113425
40. Lewis C, Olive M. (2014). Early-life stress interactions with the epigenome. Behavioural Pharmacology, 25(5–6), 341–351. https://doi.org/10.1097/fbp.0000000000000057
41. Dick A, Chen A. (2021). The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiology of Stress, 15, 100352. https://doi.org/10.1016/j.ynstr.2021.100352
42. Kawatake-Kuno A, Murai T, Uchida S. (2021). The molecular basis of depression: Implications of sex-related differences in epigenetic regulation. Frontiers in Molecular Neuroscience, 14. https://doi.org/10.3389/fnmol.2021.708004
43. Badaeva A, Danilov A, Clayton P, Moskalev A, Karasev A, Tarasevich A. et al. (2023). Perspectives on neuronutrition in prevention and treatment of neurological disorders. Nutrients, 15(11), 2505. https://doi.org/10.3390/nu15112505
44. Potter C, Moorman A, Relton C, Ford D, Mathers J, Strathdee G, et al. (2018). Maternal red blood cell folate and infant vitamin B12 status influence methylation of genes associated with childhood acute lymphoblastic leukemia. Molecular Nutrition & Food Research, 62(22). https://doi.org/10.1002/mnfr.201800411
45. Wu S, Zhang J, Li F, Du W, Zhou X, Wan M, et al. (2019). One-carbon metabolism links nutrition intake to embryonic development via epigenetic mechanisms. Stem Cells International, 2019, 1–8. https://doi.org/10.1155/2019/3894101
46. Alzeer J, Arafeh R, Al-Gubory K H. (2017). Antioxidants in the prevention and treatment of cancer. In K. Al-Gubory & I. Laher (Eds.), Nutritional Antioxidant Therapies: Treatments and Perspectives (pp. N/A). Springer, Cham. https://doi.org/10.1007/978-3-319-67625-8_19
47. Chango A, Pogribny I. (2015). Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients, 7(4), 2748–2770. https://doi.org/10.3390/nu7042748
48. Shields A E, Zhang Y, Argentieri M A, Warner E T, Cozier Y C, Liu C, et al. (2021). Stress and spirituality in relation to HPA axis gene methylation among US Black women. Epigenomics, 13(21), 1711–1734. https://doi.org/10.2217/epi-2021-0275
49. Xue J, Zempleni J. (2013). Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats. Scandinavian Journal of Immunology, 78, 419–425.
50. Teixeira M Z. (2021). Telomere and telomerase: Biological markers of organic vital force state and homeopathic treatment effectiveness. Homeopathy, 110(4), 283–291. https://doi.org/10.1055/s-0041-1726008
51. Alzeer J. (2024). Harnessing the power of choice: How to thrive in a universe of entropy. American Journal of Medical Chemistry, 5(1), 2–6. https://doi.org/10.31487/j.AJMC.2024.01.02
52. Alzeer J. (2024). Beyond disorder: A new perspective on entropy in chemistry. American Journal of Medical Chemos, 5, 1–5.
53. Hazard D, Plisson‐Petit F, Moreno‐Romieux C, Fabre S, Drouilhet L. (2020). Genetic determinism exists for the global DNA methylation rate in sheep. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.616960
54. Sanders A, Bhongir N, vonHoldt B, Pellegrini M. (2022). Association of DNA methylation with energy and fear-related behaviors in canines. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1025494
55. Alzeer J, Benmerabet H. (2024). Exploring the intersection of quantum mechanics and human psychology. Psychological Disease Research, 7(1), 1–6. https://doi.org/10.31487/j.pdr.2024.01
56. Kumsta R, Schlotz W, Golm D, Moser D, Kennedy M, Knights N, et al. (2017). HPA axis dysregulation in adult adoptees twenty years after severe institutional deprivation in childhood. Psychoneuroendocrinology, 86, 196–202. https://doi.org/10.1016/j.psyneuen.2017.09.021
57. Alzeer J, Benmerabet H. (2025). Potentiality to actuality: Quantum physics inspires creative innovation. Jurnal Pijar Mipa, 20(1), 1–6. https://doi.org/10.29303/jpm.v20i1.8176
58. Chaix R, Fagny M, Cosín‐Tomás M, Álvarez‐López M, Lemée L, Regnault B, et al. (2020). Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways. Brain, Behavior, and Immunity, 84, 36–44. https://doi.org/10.1016/j.bbi.2019.11.003
59. Lester B, Conradt E, Marsit C. (2016). Introduction to the special section on epigenetics. Child Development, 87(1), 29–37. https://doi.org/10.1111/cdev.12489
60. Alzeer J. (2025). Personality in Motion: How Values, Energy, and Conscious Choice Shape Identity. Jurnal Pijar Mipa, 20(2), 193–200. https://doi.org/10.29303/jpm.v20i2.8533
61. Zyryanov S, Фитилев С, Возжаев А, Шкребнёва И, Klyuev D. (2020). Critical aspects of the management of stable coronary artery disease in primary care practice or how to increase the efficacy of evidence-based pharmacological therapy. Research Results in Pharmacology, 6(3), 15–20. https://doi.org/10.3897/rrpharmacology.6.53615
62. Alzeer J. (2021). Permissible medicine and rationalization of Halal pharma. Halalsphere, 1(1), 43–52. https://doi.org/10.31436/hs.v1i1.18
63. Lee J, Jaini P, Papa F. (2020). An epigenetic perspective on lifestyle medicine for depression: Implications for primary care practice. American Journal of Lifestyle Medicine, 16(1), 76–88. https://doi.org/10.1177/1559827620954779
64. Franzago M, Pilenzi L, Rado S, Vitacolonna E, Stuppia L. (2022). The epigenetic aging, obesity, and lifestyle. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.985274