Effect of Synthetic Routes on Physicochemical Properties and Biomedical Applications of Zinc Oxide Nanomaterials and Quaternary Ammonium Compounds

Main Article Content

Satyawati Sudhir Joshi, Dr.

Abstract

ZnO has acquired a large amount of attention due to its immense potential for fundamental studies regarding effects of morphology, dimensionality, and size dependent physical and chemical properties as well as their variety of applications. In the studies of nanomaterials, it has been observed that the size and shape of a nanomaterial depends on the nature of the stabilizer, i.e. surfactant, ligand, polymer to salt ratio, reaction temperature and time. The synthetic method applied also plays a role. The synthetic methods discussed in this review explain how the properties, morphology changes, affect the size, shape, and activity of ZnO nanomaterial. Especially, the electrochemical method has not been used so far. Its advantages are described. Recent advances in research on biomedical applications using ZnO indicate its potentiality as an anticancer, antidiabetic drug. Biocides, primarily those containing quaternary ammonium compounds, are heavily used in hospital environments, and various industries (food, water, cosmetic, etc). Quaternary ammonium compounds ultimately reach the environment via waste water and may remain there for a long time, due to their poor biodegradability. The potential implications of use in the emergence of antibiotic resistance have been paid little attention. This review also discusses the significance of quaternary ammonium compounds in biomedical applications. We have used tetra alkyl quaternary ammonium salt as capping agent and as a supporting electrolyte in the synthesis of ZnO NPs by electrochemical method. This method produces fine ZnO particles in the pure form. Combination of ZnO, quaternary ammonium compounds and use of electrochemical synthesis method may help in developing a new strategy towards sensing and drug delivery applications. The versatile use of quaternary ammonium compounds has been reported, their risk factors must be taken into account while choosing the compounds. Although ZnO NPs are proven to be a future potential, their toxicity is the main concern and more in-depth understanding should be developed. Understanding of cellular and molecular pathways and clinical trials will be required in future.

Article Details

How to Cite
JOSHI, Satyawati Sudhir. Effect of Synthetic Routes on Physicochemical Properties and Biomedical Applications of Zinc Oxide Nanomaterials and Quaternary Ammonium Compounds. Medical Research Archives, [S.l.], v. 13, n. 3, mar. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6439>. Date accessed: 06 apr. 2025. doi: https://doi.org/10.18103/mra.v3i3.6439.
Section
Research Articles

References

1. Patil PR, Joshi SS. Polymerized organic–inorganic synthesis of nanocrystalline zinc oxide. Mater Chem Phys. 2007;105(2):354-361. doi:https://doi.org/10.1016/j.matchemphys.2007.04.072
2. Ushio Y, Miyayama M, Yanagida H. Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction. Sens Actuators B Chem. 1994;17(3):221-226. doi:https://doi.org/10.1016/0925-4005(93)00878-3
3. Troy CT. New phosphor view promises display advances. Photonics Spectra. 1997;31(1):34.
4. Fan Z, Lu JG. Zinc Oxide Nanostructures: Synthesis and Properties. J Nanosci Nanotechnol. 2005;5(10):1561-1573. doi:10.1166/jnn.2005.182
5. Pan H, Zhu Y, Ni Z, et al. Optical and Field Emission Properties of Zinc Oxide Nanostructures. J Nanosci Nanotechnol. 2005;5(10):1683-1687. doi:10.1166/jnn.2005.183
6. Subramanian V, Wolf EE, Kamat P V. Green Emission to Probe Photoinduced Charging Events in ZnO−Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration. J Phys Chem B. 2003;107(30):7479-7485. doi:10.1021/jp0275037
7. Weissenberger D, Gerthsen D, Reiser A, et al. Influence of the measurement procedure on the field-effect dependent conductivity of ZnO nanorods. Appl Phys Lett. 2009;94(4):042107. doi:10.1063/1.3075849
8. Wang ZL, Kong XY, Ding Y, et al. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Adv Funct Mater. 2004;14(10):943-956. doi:https://doi.org/10.1002/adfm.200400180
9. Li Y, Zhou X, Hu X, Zhao X, Fang P. Formation of Surface Complex Leading to Efficient Visible Photocatalytic Activity and Improvement of Photostabilty of ZnO. The Journal of Physical Chemistry C. 2009;113(36):16188-16192. doi:10.1021/jp9056863
10. Xiang Q, Meng GF, Zhao HB, et al. Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing. The Journal of Physical Chemistry C. 2010;114(5):2049-2055. doi:10.1021/jp909742d
11. Özgür Ü, Alivov YaI, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005;98(4):041301. doi:10.1063/1.1992666
12. Kind H, Yan H, Messer B, Law M, Yang P. Nanowire Ultraviolet Photodetectors and Optical Switches. Advanced Materials. 2002;14(2):158-160. doi:https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
13. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825-1834. doi:https://doi.org/10.1016/j.drudis.2017.08.006
14. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-1077. doi:10.1517/17425247.2010.502560
15. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015;20(9):1143-1151. doi:https://doi.org/10.1016/j.drudis.2015.05.009
16. Zhang Y, Nayak T, Hong H, Cai W. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med. 2013;13(10):1633-1645. doi:10.2174/1566524013666131111130058
17. Joshi SS. Crystal Habit Modification Using Habit Modifiers. In: Kolesnikov N, Borisenko E, eds. Modern Aspects of Bulk Crystal and Thin Film Preparation. IntechOpen; 2012. doi:10.5772/28451
18. Joshi SS, Patil SF, Iyer V, Mahumuni S. Radiation induced synthesis and characterization of copper nanoparticles. Nanostructured Materials. 1998;10(7):1135-1144. doi:https://doi.org/10.1016/S0965-9773(98)00153-6
19. Temgire MK, Joshi SS. Optical and structural studies of silver nanoparticles. Radiation Physics and Chemistry. 2004;71(5):1039-1044. doi:https://doi.org/10.1016/j.radphyschem.2003.10.016
20. Rishikeshi SN, Joshi S. Cu–ZnO nanocrystallites by aqueous thermolysis method. J Therm Anal Calorim. 2012;109(3):1473-1479. doi:10.1007/s10973-012-2212-y
21. Jogdand SS, Das A, Dhayagude A, Kapoor S, Joshi SS. Role of PVA in synthesis of nano Co3O4-decorated graphene oxide. Polym Adv Technol. 2015;26(9):1114-1122. doi:https://doi.org/10.1002/pat.3543
22. Telkar MM, Rode C V, Chaudhari R V, Joshi SS, Nalawade AM. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide. Appl Catal A Gen. 2004;273(1):11-19. doi:https://doi.org/10.1016/j.apcata.2004.05.056
23. Dhayagude AC, Das A, Joshi SS, Kapoor S. γ-Radiation induced synthesis of silver nanoparticles in aqueous poly (N-vinylpyrrolidone) solution. Colloids Surf A Physicochem Eng Asp. 2018;556:148-156. doi:https://doi.org/10.1016/j.colsurfa.2018.08.028
24. Suvidya R, Pravin L, Shubhangi B, Satyawati J. Rapid Green Synthesis and Biological Activity of Silver Nanoparticles Using Adhatoda vasica Leaf Extract. Adv Sci Eng Med. 2012;5(4):319-324. doi:10.1166/ASEM.2013.1258
25. Sable SV, Kawade S, Ranade S, Joshi S. Bioreduction mechanism of silver nanoparticles. Materials Science and Engineering: C. 2020;107:110299. doi:https://doi.org/10.1016/j.msec.2019.110299
26. Vaishampayan M V, Mulla IS, Joshi SS. Optical and Photocatalytic Properties of Single Crystalline ZnO at the Air–Liquid Interface by an Aminolytic Reaction. Langmuir. 2011;27(20):12751-12759. doi:10.1021/la203006n
27. Vaishampayan M V, Mulla IS, Joshi SS. Low temperature pH dependent synthesis of flower-like ZnO nanostructures with enhanced photocatalytic activity. Mater Res Bull. 2011;46(5):771-778. doi:https://doi.org/10.1016/j.materresbull.2010.11.007
28. Joshi S, Patil P, Krishnamurthy V. Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide. Def Sci J. 2008;58. doi:10.14429/dsj.58.1699
29. Patil PR, Krishnamurthy VN, Joshi SS. Effect of Nano-Copper Oxide and Copper Chromite on the Thermal Decomposition of Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics. 2008;33(4):266-270. doi:https://doi.org/10.1002/prep.200700242
30. Joshi SS, Patil PR, Nimase MS, Bakare PP. Role of ligands in the formation, phase stabilization, structural and magneticproperties of α-Fe2O3 nanoparticles. Journal of Nanoparticle Research. 2006;8(5):635-643. doi:10.1007/s11051-005-9033-x
31. Therese GHA, Kamath PV. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chemistry of Materials. 2000;12(5):1195-1204. doi:10.1021/cm990447a
32. Yin J, Gao F, Wei C, Lu Q. Water Amount Dependence on Morphologies and Properties of ZnO nanostructures in Double-solvent System. Sci Rep. 2014;4(1):3736. doi:10.1038/srep03736
33. Pang H, Gao F, Lu Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm. 2010;12(2):406-412. doi:10.1039/B904705K
34. Khan Z, AL-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO. Effects of solvents on the stability and morphology of CTAB-stabilized silver nanoparticles. Colloids Surf A Physicochem Eng Asp. 2011;390(1):120-125. doi:https://doi.org/10.1016/j.colsurfa.2011.09.015
35. Thomas J, Evans DF. Transport processes in hydrogen-bonding solvents. IV. Conductance of electrolytes in formamide at 25 and 10.deg. J Phys Chem. 1970;74(21):3812-3819. doi:10.1021/j100715a016
36. Martin A, Swarbrick J, Cammarata A. Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences. 3rd ed. Lea & Febiger; 1983.
37. Ohmine Iwao, Tanaka Hideki. Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics. Chem Rev. 1993;93(7):2545-2566. doi:10.1021/cr00023a011
38. Patel J, Varade D, Bahadur P. Effect of tetraalkylammonium bromides on the micellar behaviour of ionic and non-ionic surfactants. Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry. 2004;43:715-721.
39. Thakur P, Joshi SS. Effect of alcohol and alcohol/water mixtures on crystalline structure of CdS nanoparticles. J Exp Nanosci. 2012;7(5):547-558. doi:10.1080/17458080.2010.543990
40. Dhayagude AC, Nikam S V, Kapoor S, Joshi SS. Effect of electrolytic media on the photophysical properties and photocatalytic activity of zinc oxide nanoparticles synthesized by simple electrochemical method. J Mol Liq. 2017;232:290-303. doi:https://doi.org/10.1016/j.molliq.2017.02.074
41. Merianos JJ. Quaternary Ammonium Antimicrobial Compounds. In: Block SS, ed. Disinfection, Sterilization, and Preservation. 4th ed. Lea & Febiger; 1991:225-255.
42. Walker EB. Quaternary Ammonium Compounds. In: Paulson DS, ed. Handbook of Topical Antimicrobials: Industrial Applications in Consumer Products and Pharmaceuticals. Marcel Dekker, Inc.; 2003:99-116.
43. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99(4):703-715. doi:10.1111/j.1365-2672.2005.02664.x
44. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents. 2012;39(5):381-389. doi:https://doi.org/10.1016/j.ijantimicag.2012.01.011
45. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP. Does the Wide Use of Quaternary Ammonium Compounds Enhance the Selection and Spread of Antimicrobial Resistance and Thus Threaten Our Health? Microbial Drug Resistance. 2010;16(2):91-104. doi:10.1089/mdr.2009.0120
46. Forman ME, Fletcher MH, Jennings MC, Duggan SM, Minbiole KPC, Wuest WM. Structure–Resistance Relationships: Interrogating Antiseptic Resistance in Bacteria with Multicationic Quaternary Ammonium Dyes. ChemMedChem. 2016;11(9):958-962. doi:https://doi.org/10.1002/cmdc.201600095
47. Mohapatra S, Yutao L, Goh SG, et al. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. J Hazard Mater. 2023;445:130393. doi:https://doi.org/10.1016/j.jhazmat.2022.130393
48. Zheng G, Webster TF, Salamova A. Quaternary Ammonium Compounds: Bioaccumulation Potentials in Humans and Levels in Blood before and during the Covid-19 Pandemic. Environ Sci Technol. 2021;55(21):14689-14698. doi:10.1021/acs.est.1c01654
49. Pereira AP, Antunes P, Peixe L, Freitas AR, Novais C. Current insights into the effects of cationic biocides exposure on Enterococcus spp. Front Microbiol. 2024;15:1392018. doi:10.3389/fmicb.2024.1392018
50. Gerba CP. Quaternary Ammonium Biocides: Efficacy in Application. Appl Environ Microbiol. 2015;81(2):464-469. doi:10.1128/AEM.02633-14
51. Buffet-Bataillon S, Branger B, Cormier M, Bonnaure-Mallet M, Jolivet-Gougeon A. Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. Journal of Hospital Infection. 2011;79(2):141-146. doi:https://doi.org/10.1016/j.jhin.2011.06.008
52. Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials. 2018;34(6):851-867. doi:https://doi.org/10.1016/j.dental.2018.03.014
53. Bilensoy E, Varan C. Is there a niche for zinc oxide nanoparticles in future drug discovery? Expert Opin Drug Discov. 2023;18(9):943-945. doi:10.1080/17460441.2023.2230152
54. Mita Y, Aoyagi Y, Yanagi M, Suda T, Suzuki Y, Asakura H. The usefulness of determining des-γ-carboxy prothrombin by sensitive enzyme immunoassay in the early diagnosis of patients with hepatocellular carcinoma. Cancer. 1998;82(9):1643-1648. doi:https://doi.org/10.1002/(SICI)1097-0142(19980501)82:9<1643::AID-CNCR8>3.0.CO;2-B
55. Anjum S, Hashim M, Malik SA, et al. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel). 2021;13(18). doi:10.3390/cancers13184570
56. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination. PLoS One. 2014;9(11):e111289-. https://doi.org/10.1371/journal.pone.0111289
57. Islam F, Shohag S, Uddin MdJ, et al. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. Materials. 2022;15(6). doi:10.3390/ma15062160