Ventilator associated pneumonia- Endotracheal tubes the real culprits. A review
Main Article Content
Abstract
In this review we will outline the reasons for the clinical assumption that the endotracheal tube is the main source of VAP. We have used literature searches in PubMed, EMBASE and Google to obtain the information included in this review. Ventilator-associated pneumonia (VAP) is a hospital acquired infection of the lung that occurs after approximately 48 h of tracheal intubation and mechanical ventilation. We consider VAP a misnomer, the true cause of this infection of lung parenchyma is not primarily caused by mechanical ventilation but by presence of an endotracheal tube. The presence of an endotracheal tube (ETT) represents a major risk factor, as it disrupts the natural protective barriers of the upper airway, allowing direct access to the tracheobronchial tree. As a result, many different endotracheal tube designs have been introduced including different cuff designs, silver coated tubes and tubes with supraglottic suction capabilities. None of these tube designs have significantly decreased the incidence of VAP. Other clinical strategies to reduce the incidence include patient positioning, gastric decontamination and mouth hygiene with antimicrobial soap. Only a combination of the above-mentioned strategies has demonstrated reduction in the incidence of VAP.
The prevention and diagnosis of VAP continues to present a clinical conundrum although many factors are involved, we state that the major culprit is the introduction of endotracheal intubation longer than 48 hours. With the introduction of AI the development of prevention and treatment algorithms in concert with clinical and experimental research is required to continue to ameliorate this life threatening complication.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Barbier, F., Andremont, A., Wolff, M. & Bouadma, L. Hospitalacquired pneumonia and ventilator-associated pneumonia:recent advances in epidemiology and management. Curr. Opin.Pulm. Med. 2013, 19, 216–228.
3. Timsit, J. F., Esaied, W., Neuville, M., Bouadma, L. & Mourvllier, B. Update on ventilator-associated pneumonia. F1000Res 2017 6, 2061
4. Safdar, N., Dezfulian, C., Collard, H. R. & Saint, S. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit. Care Med. 2005, 33, 2184–2193
5. Zolfaghari, P. S. & Wyncoll, D. L. The tracheal tube: gateway to ventilator-associated pneumonia. Crit. Care 2011, 15, 310 .
6. GoleNaz A. Kohbodi; Venkat Rajasurya; Asif Noor Ventilator-Associated Pneumonia. NCBI Bookshelf. StatPearls Publishing; 2025 Jan-. 1-7 NBK [507711]
7. W M Shelly, R B Dawson, I A May. Cuffed tubes as a cause of tracheal stenosis J Thorac Cardiovasc Surg. 1969 May;57(5):623-7.
8. Colice GL Technical standards for tracheal tubes. Clin Chest Med. 1991 Sep;12(3):433-48
9. Lichtenthal PR, Maul D, Borg U. Do tracheal tubes prevent microaspiration? Br J Anaesth. 2011 Nov;107(5):821-2. doi: 10.1093/bja/aer312.
10. Jain V, Vashisht R, Yilmaz G, Bhardwaj A. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Jul 31, 2023. Pneumonia Pathology. [PubMed: 30252372]
11. Iosifidis E, Pitsava G, Roilides E. Ventilator-associated pneumonia in neonates and children: a systematic analysis of diagnostic methods and prevention. Future Microbiol. 2018 Sep;13:1431-1446
12. Lynch, J. P.III. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. CHEST 119, 2001, 373S–384SS
13. Mietto, C., Pinciroli, R., Patel, N. & Berra, L. Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir.Care 2013, 58, 990–1007
14. Young, P. J., Pakeerathan, S., Blunt, M. C. & Subramanya, S. A lowvolume, low-pressure tracheal tube cuff reduces pulmonary aspiration. Crit. Care Med. 2006, 34, 632–639
15. Carter, E. L. et al. Strategies to prevent ventilation-associated pneumonia: the effect of cuff pressure monitoring techniques and tracheal tube type on aspiration of subglottic secretions: an invitro study. Eur. J. Anaesthesiol.2014, 31, 166–171
16. Craven, D. E. & Hjalmarson, K. I. Ventilator-associated tracheobronchitis and pneumonia: thinking outside the box. Clin. Infect. Dis. 2010, 51, S59–S66
17. Niederman, M. S. The clinical diagnosis of ventilator-associated pneumonia. Respir. Care 2005, 50, 788–796 discussion 807-12
18. Jackson, L. & Owens, M. Does oral care with chlorhexidine reduce ventilator-associated pneumonia in mechanically ventilated adults? Br. J. Nurs. 2019, 28, 682–689
19. Goetz, R. L., Vijaykumar, K. & Solomon, G. M. Mucus clearance strategies in mechanically ventilated patients. Front Physiol. 2022, 13, 834716
20. Konrad, F., Schreiber, T., Brecht-Kraus, D. & Georgieff, M. Mucociliary transport in ICU patients. Chest 1994, 105, 237–241
21. Chastre, J. & Fagon, J. Y. Ventilator-associated pneumonia. Am. J.Respir. Crit. Care Med. 2002, 165, 867–903
22. Lorente, L., Lecuona, M., Jiménez, A., Mora, M. L. & Sierra, A. Ventilator-associated pneumonia using a heated humidifier or a heat and moisture exchanger: a randomized controlled trial [ISRCTN88724583]. Crit. Care 2006, 10, R116
23. Deem, S. & Treggiari, M. M. New endotracheal tubes designed to prevent ventilator-associated pneumonia: do they make a difference? Respir. Care 2010, 55, 1046–1055
24. Adair, C. G. et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med. 1999, 25, 1072–1076
25. Morris A. C. Management of pneumonia in intensive care. J. Emgy Crit. Care Med.2018, 2 https://doi.org/10.21037/jeccm.2018.11.06
26. Biel, M. A. et al. Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg. Med. 2011, 43, 586–590
27. Wu, D., Wu, C., Zhang, S. & Zhong, Y. Risk factors of ventilatorassociated pneumonia in critically III patients. Front Pharm. 2019, 10,482
28. Chomton M, Brossier D, Sauthier M, Vallières E, Dubois J, Emeriaud G, Jouvet P. Ventilator-Associated Pneumonia and Events in Pediatric Intensive Care: A Single Center Study. Pediatr Crit Care Med. 2018 Dec;19(12):1106-1113. [PubMed: 30234676]
29. Martin-Loeches I, Rodriguez AH, Torres A. New guidelines for hospital-acquired pneumonia/ventilator-associated pneumonia: USA vs. Europe. Curr Opin Crit Care. 2018 Oct;24(5):347-352. [PubMed: 30063491]
30. Niederman MS. Antibiotic treatment of hospital-acquired pneumonia: is it different from ventilator-associated pneumonia? Curr Opin Crit Care. 2018 Oct;24(5):353-360. [PubMed: 30028739]
31. Klompas M, Branson R, Cawcutt K, Crist M, Eichenwald EC, Greene LR, Lee G, Maragakis LL, Powell K, Priebe GP, Speck K, Yokoe DS, Berenholtz SM. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update Infect Control Hosp Epidemiol. 2022 Jun;43(6):687-713. doi: 10.1017/ice.2022.88. Epub 2022 May 20.
32. Klompas, M, Branson, R, Eichenwald, EC, et al. Strategies to prevent ventilator-associated pneumonia in acute-care hospitals: 2014 update. Infect Control Hosp Epidemiol 2014;35 suppl 2:S133–S154.10.1017/S0899823X00193894CrossRefGoogle Scholar
33. Pozuelo-Carrascosa, DP, Herráiz-Adillo, Á, Alvarez-Bueno, C, Añón, JM, Martínez-Vizcaíno, V, CaveroRedondo, I. Subglottic secretion drainage for preventing ventilator-associated pneumonia: an overview of systematic reviews and an updated meta-analysis. Eur Respir Rev 2020;29:190107. 10.1183/16000617.0107-2019CrossRefGoogle Scholar
34. Sanaie, S, Rahnemayan, S, Azizi, S, et al. Comparison of subglottic vs nonsubglottic secretion drainage in prevention of ventilator-associated pneumonia: a systematic review and meta-analysis. Trends Anaesthesia Crit Care 2022;43:23–29.10.1016/j.tacc.2022.02.002CrossRefGoogle Scholar
35. K, Park, J-B, Park, WB, et al. Effect of perioperative subglottic secretion drainage on ventilator-associated pneumonia after cardiac surgery: a retrospective, before-and-after study. J Cardiothor Vasc Anesth 2021;35:2377–2384.10.1053/j.jvca.2020.09.126CrossRefGoogle ScholarPubMed
36. Lacherade, J-C, Azais, M-A, Pouplet, C, Colin, G. Subglottic secretion drainage for ventilator-associated pneumonia prevention: an underused efficient measure. Ann Translat Med 2018;6:422.10.21037/atm.2018.10.40CrossRefGoogle ScholarPubMed
37. Philippart, F, Gaudry, S, Quinquis, L, et al. Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients. Am J Resp Crit Care Med 2015;191:637–645.10.1164/rccm.201408-1398OCCrossRefGoogle ScholarPubMed
38. Maertens, B, Blot, K, Blot, S. Prevention of ventilator-associated and early postoperative pneumonia through tapered endotracheal tube cuffs: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 2018;46:316–323.10.1097/CCM.0000000000002889CrossRefGoogle ScholarPubMed
39. D’haese, J, De Keukeleire, T, Remory, I, Van Rompaey, K, Umbrain, V, Poelaert, J. Assessment of intraoperative microaspiration: does a modified cuff shape improve sealing? Acta Anaesthesiol Scand 2013;57:873–880.10.1111/aas.12119CrossRefGoogle ScholarPubMed
40. Alecrim, RX, Taminato, M, Belasco, A, Longo, MCB, Kusahara, DM, Fram, D. Strategies for preventing ventilator-associated pneumonia: an integrative review. Revista brasileira de enfermagem 2019;72:521–530.10.1590/0034-7167-2018-0473CrossRefGoogle ScholarPubMed
41. Leonardo Lorente, María Lecuona, Alejandro Jiménez, Lisset Lorenzo, Isabel Roca, Judith Cabrera, Celina Llanos, María L Mora. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014 Apr 21;18(2):R77. doi: 10.1186/cc13837.