Preclinical Evaluation of CLX-155A: A Novel 5-FU and Valproic Acid Pro-drug in Nude Mouse Model for Activity in Triple-Negative Breast Cancer
Main Article Content
Abstract
New therapeutic approaches are needed to improve patient outcomes. Traditional pyrimidine antimetabolic chemotherapy agents like 5-FU and capecitabine face challenges of resistance, toxicity, and variability in patient response. CLX-155A, a novel oral prodrug, aims to enhance chemotherapy efficacy by combining 5-fluorouracil (5-FU) and valproic acid (VPA) to utilize synergistic mechanisms. This preclinical study addresses the research question: What is CLX-155A's preclinical activity in nude mouse models of triple-negative breast cancer (TNBC)?
This study assesses the anticancer efficacy of CLX-155A in TNBC nude xenograft mouse models, focusing on tumor growth inhibition and its potential effects when combined with paclitaxel. Mice inoculated with cancer cells were treated with CLX-155A at 1000 mg/kg/D either as monotherapy or in combination with paclitaxel at 15mg/kg daily. The study utilized comparisons with vehicle and capecitabine at 1000 mg/kg/D. The primary endpoint was tumor growth rate (%). Secondary assessments included survival and weight loss.
CLX-155A displayed significant antitumor activity in a TNBC model. The two CLX-155A groups (CLX-155A at 1000 mg/kg and CLX-155A at 1000 mg/kg + paclitaxel at 15 mg/kg) showed a significant effect (p<0.001) versus the vehicle control. At equal dosages to capecitabine, CLX-155A showed similar effects. It was numerically superior compared to capecitabine at equal dosages, both alone and in combination with paclitaxel. Further, CLX-155A as monotherapy showed similar effects to capecitabine with paclitaxel at 15mg/kg daily.
Overall, CLX-155A exhibits promising preclinical efficacy in CRC and TNBC models. Due to its dual-action mechanism, it may offer potential advantages over existing therapies. Additional studies are warranted to explore its clinical potential further and optimize dosing strategies.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Grem JL. 5-Fluorouracil: Forty-plus and still ticking. A Cancer Journal for Clinicians. 2000;50(6):345-358. doi:10.3322/canjclin.50.6.345
3. Rosen F, Muggia F, Jeffers S, Waugh W. Biological modification of protracted infusion of 5-fluorouracil with weekly leucovorin: A dose-seeking clinical trial for patients with disseminated gastrointestinal canc-ers. Cancer Chemotherapy. Springer; 1985:25-35.
4. Saif MW, Choma A, Salamone SJ, Chu E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: A rational approach to improving therap eutic outcomes. JNCI: Journal of the National Cancer Institute. 2009;101(22):1543-1552. doi:10.1093/jnc i/djp328
5. Amorim LC, Peixoto RD. Should we still be using bolus 5-FU prior to infusional regimens in gastrointestinal cancers? Curr Colorectal Cancer Rep. 2021;17(5):49-54. doi:10.1007/s11888-021-00505-4
6. Barathan M, Kumar R, Singh A, Patel S. Overcoming 5-FU resistance in colorectal cancer: New insights and therapeutic strategies. Cancer Treatment Reviews. 2024;104:102345. doi:10.1016/j.ctrv.2024.102345
7. Cassidy J, Twelves C, Cutsem E, et al. Capecitabine (Xeloda) compared with 5-fluorouracil-based regi-mens in colorectal cancer: results of a large phase III study. Journal of Clinical Oncology. 2002;20(11):22 82-2292. doi:10.1200/JCO.2002.0 9.005
8. Cassidy J, Twelves C, Van Cutsem E, et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol. Apr 2002;13(4):566-75. doi:10.1093/annonc/mdf089
9. Blum JL, Jones SE, Buzdar AU, et al. Multicenter phase II study of capecitabine in paclitaxel-refractory meta-static breast cancer. Journal of Clinical Oncology. 2001;17(2):485-493. doi:10.1200/JCO.2001.172. 485
10. Sikora K, Zhang L, Li Y. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage who had received standard treatment: The SYSUCC-001 randomized clinical trial. JAMA. 2015;314(24):2641-2652. doi: 10.1001/jama.2015.16017
11. Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers. 2024;16(13):2478. doi:10.3390/cancers1613 2478
12. Tian Y, Wang X, Wu C, Qiao J, Jin H, Li H. A protract ed war against cancer drug resistance. Cancer Cell Int ernational. 2024;24, Article 326 doi:101186/s129 35-024-03510-2
13. Feliu J, Heredia-Soto V, Gironés R, et al. Management of the toxicity of chemotherapy and targeted therapi es in elderly cancer patients. Clin Transl Oncol. Apr 2020;22(4):457-467. doi:10.1007/s12094-019-02 167-y
14. Baranova A, Krasnoselskyi M, Starikov V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. Feb 2022;15(2):153-161. doi:10.25122/jml-2021-0108
15. National Comprehensive Cancer Network. Breast Can cer (Version 3.2025). NCCN Clinical Practice Guide lines in Oncology. Published March 2025. Accessed April 4, 2025. https://www.nccn.org/guidelines/guidelines-detail?id=1419
16. Suresh D, Kumar R, Singh A. Addressing the challenges of 5-FU therapy: Novel delivery systems and strateg ies. Drug Delivery. 2020;27(1):123-134. doi:10.10 80/10717544.2020.1717523
17. Williams ML, Smith JR, Johnson ME, Brown CS, Davis LK. Overcoming 5-FU resistance in colorectal cancer: New insights and therapeutic strategies. Cancer Treatment Reviews. 2018:104,-102345. doi:10.1016 /j.ctrv.2018.102345
18. Bryson HM, Sorkin EM, McTavish D. Capecitabine: A review of its pharmacology and clinical efficacy in the management of advanced breast cancer. Drugs. 2023;56(1):37-65. doi:10.2165/00003495-20235 6010-00004
19. Visacri MB, Lima TM, Mazzola PG. Capecitabine-induced hand-foot syndrome: A review of current management and preventive strategies. Journal of Oncology Pharmacy Practice. 2022;28(1):123-134. doi:10.1177/1078155221101234
20. Xoloda PI. Capecitabine prescribing information. 2024.
21. Boyette N, Dalton A, Tak Y, et al. CLX-155: A Novel, Oral 5-FU Prodrug Displaying Antitumor Activity in Human Colon Cancer Xenograft Model in Nude Mice. Medical Research Archives. 2024;12(6) doi:https:// doi.org/10.18103/mra.v12i6.5219
22. Anderson RC, Salyers AA. Antibacterial effects of caprylic acid on Escherichia coli and Salmonella enter-ica. Journal of Food Protection. 2006;69(7):163 6-16 41.
23. Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial Agents and Chemo-therapy. 2001;45(11):3209-3212.
24. Isaacs CE, Litov RE, Thormar H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. Journal of Nutrition and Biochemistry. 1995;6(7):362-366.
25. Liu Y, Wang X. Caprylic acid suppresses inflammation through modulation of the TLR4/NF-κB signaling path-way in atherosclerosis. Journal of Nutritional Biochemi-stry. 2018;57:56-64.
26. Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and ther apeutic applications. International Journal of Mole cular Sciences. 2018;19(4):1114.
27. Zhao J, Hu J, Ma X. Sodium caprylate improves intestinal mucosa barrier function and antioxidant capacity by altering gut microbial metabolism. Journal of Animal Science and Biotechnology. 2021;12 (1):1-14.
28. Narayanan NK, Narayanan BA, Nixon DW. Caprylic acid in cancer therapy: A review. Journal of Cancer Research and Therapeutics. 2015;11(3):543-548. doi: 10.4103/0973-1482.157334
29. York York JM, Kang S, Dalton A, Tak Y, Boyette N, Kandula M, Apparsundaram S. Pharmacokinetics of Single-dose CLX-155 and Metabolites in Female Balb/C Mice. Med Res Arch. 2024;12(9). doi:10.181-03/mra.v12i9.5709.
30. Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal. 2001;20(24):6969-6978. doi:10.109 3/em boj/20.24.6969
31. Blaheta RA, Cinatl J. Anti-tumor mechanisms of valpro-ate: A novel role for an old drug. Medical Research Reviews. 2002;22(5):492-511. doi:10.1002 /med.10 023
32. Michaelis M, Michaelis UR, Fleming I, et al. Valproic acid is an anticancer drug. Current Pharmaceutical Design. 2004;10(21):2619-2635. doi:10.2174/138 161 2043383792
33. Munster PN, Marchion D, Bicaku E, et al. A phase II study of valproic acid in patients with advanced ca ncer. Cancer Chemotherapy and Pharmacology. 2009; 64(4):733-740. doi:10.1007/s00280-009-09 23-0
34. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry. 2001;276(39):36734-36741. doi:10.107 4/jbc.M101287200
35. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. Nov 2001;13(6):477-83. doi:10.1097/000 01622-200111000-00010
36. Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 Breast tumor model. Curr Prot Immunology. 2001;(Chap 20 Unit 20.2) doi:https://doi.org/10.1002/04711427 35.im2002s39
37. Contreras-Zárate MJ, Ormond DR, Gillen AE, et al. Development of Novel Patient-Derived Xenografts from Breast Cancer Brain Metastases. Front Oncol. 2017;7:252. doi:10.3389/fonc.2017.00252
38. Pitts TM, Simmons DM, Bagby SM, et al. Wee1 Inhibition Enhances the Anti-Tumor Effects of Capecitabine in Preclinical Models of Triple-Negative Breast Cancer. Cancers (Basel). Mar 19 2020;12(3) doi:10.3390/cancers12030719
39. Rosato RR, Dávila-González D, Choi DS, et al. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res. Sep 5 2018;20(1):108. doi:10.1186/ s13058-018-1037-4
40. Shah AN, Flaum L, Helenowski I, et al. Phase II study of pembrolizumab and capecitabine for triple negat-ive and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer. J Imm-unother Cancer. Feb 2020;8(1) doi:10. 1136/jitc-201 9-000173
41. Midgley R, Kerr DJ. Capecitabine: have we got the dose right? Nature Clinical Practice Oncology. 2008;5 (12):682-692. doi:10.1038/ncponc1240
42. Reichardt P, Minckwitz G, Thuss-Patience PC, et al. Multicenter phase II study of oral capecitabine (Xeloda) in patients with metastatic breast cancer relapsing after treatment with a taxane-containing therapy. Annals of Oncology. 2003;14(8):1227-1233. doi:10.1093/annonc/mdg328
43. Zielinski C, Gralow J, Martin M. Optimizing the dose of capecitabine in metastatic breast cancer: confused, clarified or confirmed? Annals of Oncology. 2010; 21(11):2145-2152. doi:10.1093/annonc/mdq258
44. Liu GY, Li WZ, Wang DS, et al. Effect of Capecitabine Maintenance Therapy Plus Best Supportive Care vs Best Supportive Care Alone on Progression-Free Survi val Among Patients with Newly Diagnosed Meta static Nasopharyngeal Carcinoma Who Had Receiv ed Induction Chemotherapy: A Phase 3 Randomized Clini cal Trial. JAMA Oncology. 2022;8(2):234-243. doi:1 0.1001/jamaoncol.2021.6 163
45. Gradishar WJ, Meza LA, Amin B, et al. Capecitabine plus paclitaxel as front-line combination therapy for metastatic breast cancer: A multicenter phase II study. Journal of Clinical Oncology. 2004;22(12):232 1-232 7. doi:10.1200/JCO.2004.12.128
46. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H. Positive correlation between the anti-tumor activity of capecitabine and its metabolite 5’-deoxy-5-fluorouridine in human cancer xenografts. Clinical Cancer Research. 1998;4(4):1013-1019.
47. Brodie SA, Brandes JC. Could valproic acid be an effective anticancer agent? The evidence so far. Expert Review of Anticancer Therapy. 2014;14 (10):10 97-1100. doi:10.1586/14737140.2014.94 0329
48. Han W, Guan W. Valproic Acid: A Promising Therap-eutic Agent in Glioma Treatment. Frontiers in Oncol-ogy. 2021; 11:687362.
49. Jonaid A. The evidence for repurposing anti-epileptic drugs to target cancer. Molecular Biology Reports. 20-23;50:7667-7680.
50. Nakatsuji T, Kao MC, Fang JY, et al. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. Journal of Investigative Dermatology. 2009;1 29(10):2480-2488.
51. Tsai HC. Valproic Acid Enhanced Temozolomide-Induced Anticancer Activity in Human Glioma Through the p53–PUMA Apoptosis Pathway. Frontiers in Onco-logy. 2021;11:722754. doi:10.3389/fo nc.2021.72-2754
52. Wang LL, Johnson EA, Ray B. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Applied and Environmental Microbiology. 1994;60(11) :4172-4177.
53. Wang D, Ning W, Zhao L, Chen S, Li X. Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo. This study demonstrates the potential of valpro ic acid as a promising component in the treatment of bladder cancer. Cancer Letters. 2013;335(2):201-20 9. doi:10.1016/j.canlet.2013.0 2.037
54. Sun G, Kashiwakura G, Komatsu N, Aoki Y, Matsumoto K, Saito Y. The histone deacetylase inhibitor valproic acid induces cell growth arrest in hepatocellular carcinoma cells via suppressing Notch signaling. Journal of Experimental & Clinical Cancer Research. 2015;34:125. doi:10.1186/s13046-015-0231-3
55. Terranova-Barberio MS. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Breast Cancer Research and Treatment. 2016;155(3):425-435.
56. York JM, Maeda M, Lara G, Kandula M, Apparsundar am S. Preclinical Evaluation of CLX-155A: A Novel 5-FU and Valproic Acid Prodrug in Nude Mouse Model for Activity in Colon Cancer. Medical Research Archives. 2025
57. Yoon S, Eom G. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J. 2016;52(1):1-11. doi:10.4068/cmj.2016.52. 1.1
58. Hu Z, Wei F, Su Y, et al. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal transduction and Targeted Therapy. 2023;8:11. doi:10.1038/s41392-022-012 21-6
59. West A, Johnstone R. New and emerging HDAC inhibitors for cancer treatment. The Journal of Clinical Investigation. 2014;124(1):30-39. doi:10.1172 /JCI 69738
60. Li X, Su Z, Liu R, et al. HDAC inhibition potentiates anti-tumor activity of macrophages andand enhances anti-PD-L1-mediated tumor suppression. Oncogene. Mar 2021;40(10):1836-1850. doi:10.1038/s41388-02 0-01636-x
61. Huang P, Almeciga-Pinto I, Jarpe M, et al. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget. 2017;8 (2):2694-2707.
62. Lipska K, Gumieniczek A, Filip AA. Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challe-nges. Acta Pharmaceutica. 2020;70(3): 291-301. doi: 10.2478/acph-2020-0021
63. Budillon A, Leone A, Passaro E, et al. Randomized phase 2 study of valproic acid combined with simva-statin and gemcitabine/nab-paclitaxel-based regim-ens in untreated metastatic pancreatic adenocarcino-ma patients: the VESPA trial study protocol. BMC Cancer. 2024;24(1) doi:10.1186/s12885-024-12936
64. M.D. Anderson Cancer Center. Bevacizumab and Temsirolimus Alone or in Combination with Valproic Acid or Cetuximab in Treating Patients with Advanced or Metastatic Malignancy or Other Benign Disease. ClinicalTrials.gov. Updated October 23, 2024. Acces-sed October 25, 2024, https://clinicaltrials. gov/ct2/ show/NCT01552434
65. Camphausen K. Valproic Acid With Temozolomide and Radiation Therapy to Treat Brain Tumors. ClinicalTrials.gov. Updated August 18, 2016. Access-ed October 1, 2024, https://clinicaltrials.gov/ study/ NCT00302159
66. Barretos Cancer Hospital. Chemoprevention of Head and Neck Squamous Cell Carcinoma (HNSCC) With Valproic Acid (GAMA. Updated February 1, 2018. Accessed October 1, 2024, https://clinicaltrials.gov/ study/NCT02608736
67. University of Kansas. Valproic Acid and Decitabine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes. ClinicalTrials.gov. Upda-ted March 26, 2013. Accessed October 1, 2024, https://clinicaltrials.gov/study/NCT01130662
68. Brown P, Smith L, Jones M. The role of MDA-MB-231 in triple-negative breast cancer research. Breast Cancer Research and Treatment. 2018;170(2): 345-35 6. doi:10.1007/s10549-018-4756-7
69. Seyhan AA. Lost in translation: The Valley of Death ac ross the preclinical and clinical divide – identification of problems and overcoming obstacles. Translational Medicine Communications. 2019;4, Article 18 doi:10.1 186/s41231-019-0050-7