DCS_PathIMS: AI-powered Digital Pathology Diagnostics Platform for Breast Cancer Histology Imaging Biomarker Discovery for Precision Oncology

Main Article Content

Rajasekaran Subramanian R. Devika Rubi Rohit Tapadia Krishna Deep Yerramallu Mohammed Arham Farooq Shaistha Aara

Abstract

Background: There is a critical global shortage of pathologists, with North America having     50-65 pathologists per million people, Europe 26 per million, Asia 6.8 per million, and Africa just 4 per million. This shortage slows disease severity assessment, prognostics, and therapy decisions, particularly for cancer, impacting survival rates. In South Asia, approximately 60% of breast cancer (BC) cases are diagnosed at stage III/IV, leading to poor outcomes. Delays in cancer care exceed 30.7 weeks due to patient and system-related issues. Global cancer cases are expected to rise from 2.26 million in 2020 to 2.74 million in 2030. Traditional histological grading by pathologists is manual, time-consuming, and prone to intra-observer (0.85) and inter-observer (0.43) variability.


Methods: To address these challenges, DCS_PathIMS, an automated, AI-driven digital pathology platform is proposed. Whole Slide Imaging (WSI) scanners digitize entire biopsy slides into high-resolution pyramidal TIFF files, which are processed using AI-based deep learning models. DCS_PathIMS, has a specialized web-based imaging platform facilitates the storage, visualization, and annotation of WSI data, integrating AI to assist pathologists in diagnostic workflows.


Results: The proposed DCS_PathIMS platform has been validated with an end-to-end breast cancer histology grading diagnostics workflow. Thus, automation enhances diagnostic accuracy, consistency, and efficiency by reducing human bias and workload. AI-powered analysis identifies known and novel biomarkers, improves reproducibility, and delivers fast, quantified assessments. Pathologists can engage, evaluate, and collaborate remotely, leading to faster and more accurate decisions. The clinician-friendly UI in the proposed platform, designed and validated by clinicians, streamlines workflows and reduces stress.


Conclusion: AI-driven digital pathology addresses the shortage of pathologists and enhances diagnostic efficiency and accuracy. The proposed platform improves clinical decision-making, facilitates faster reporting, reduces false positives/negatives, and supports better patient outcomes through transparent and consistent evaluations. This approach minimizes medical-legal risks and lowers insurance costs, driving advancements in cancer care.

Keywords: Digital Pathology, WSI, Histology Grading, Nottingham Grading, Mitosis imaging marker, Nucleo-Pleomorphism Imaging marker, Biopsy digitization, Tissue biopsy

Article Details

How to Cite
SUBRAMANIAN, Rajasekaran et al. DCS_PathIMS: AI-powered Digital Pathology Diagnostics Platform for Breast Cancer Histology Imaging Biomarker Discovery for Precision Oncology. Medical Research Archives, [S.l.], v. 13, n. 4, apr. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6481>. Date accessed: 15 may 2025. doi: https://doi.org/10.18103/mra.v13i4.6481.
Section
Research Articles

References

1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin.2021, 71, 209–249. [CrossRef] [PubMed]
2. Nicosia, L.; Gnocchi, G.; Gorini, I.; Venturini, M.; Fontana, F.; Pesapane, F.; Abiuso, I.; Bozzini, A.C.; Pizzamiglio, M.; Latronico, A.; et al. History of Mammography: Analysis of Breast Imaging Diagnostic Achievements over the Last Century. Healthcare 2023, 11, 1596. https://doi.org/10.3390/healthcare11111596
3. Arian, Arvin, et al. "The breast imaging-reporting and data system (BI-RADS) made Easy." Iranian Journal of Radiology 19.1 (2022).
4. S.K. Suvarna, C. Layton, J.D. Bancroft, Bancroft’s Theory and Practice of Histological Techniques. Elsevier, 2019
5. Dunn, C., Brettle, D., Cockroft, M. et al. Quantitative assessment of H&E staining for pathology: development and clinical evaluation of a novel system. Diagn Pathol 19, 42 (2024). https://doi.org/10.1186/s13000-024-01461-w
6. Gandhi, Hardik, et al. "Correlation of Robinson’s cytological grading with Elston and Ellis’ Nottingham modification of bloom Richardson score of histopathology for breast carcinoma." Maedica 18.1 (2023): 55.
7. Elston, C. W., & Ellis, I. O. (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 19(5), 403–410. https://doi.org/10.1111/j.1365-2559.1991.tb00229.x
8. Lashen, Ayat G., et al. "Assessment of proliferation in breast cancer: cell cycle or mitosis? An observational study." Histopathology 79.6 (2021): 1087-1098.
9. Das, Asha, Madhu S. Nair, and David S. Peter. "Batch mode active learning on the Riemannian manifold for automated scoring of nuclear pleomorphism in breast cancer." Artificial Intelligence in Medicine 103 (2020): 101805.
10. Rashmi, R., Keerthana Prasad, and Chethana Babu K. Udupa. "Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review." Journal of Medical Systems 46.1 (2022): 7.
11. Iyengar, Jayaram N. "Whole slide imaging: The futurescape of histopathology." Indian Journal of Pathology and Microbiology 64.1 (2021): 8-13.
12. Ibrahim, A., Gamble, P., Jaroensri, R., Abdelsamea, M. M., Mermel, C. H., Chen, P. C., & Rakha, E. A. (2020). Artificial intelligence in digital breast pathology: Techniques and applications. Breast (Edinburgh, Scotland), 49, 267–273. https://doi.org/10.1016/j.breast.2019.12.007
13. Subramanian, D., Devika, D., Tapadia, D., & Singh, R. (2022). KMIT-Pathology: Digital Pathology AI Platform for Cancer Biomarkers Identification on Whole Slide Images. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2022.0131170.
14. M.P. Humphries, P. Maxwell, M. Salto-Tellez, QuPath: The global impact of an open source digital pathology system, Computational and Structural Biotechnology Journal, Volume 19, 2021, Pages 852-859, ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2021.01.022
15. OpenSeadragon-An Open-Source, Web-Based Viewer for High-Resolution Zoomable Images, Implemented in Pure JavaScript, for Desktop and Mobile https://openseadragon.github.io/
16. Xu H, Xu Q, Cong F, Kang J, Han C, Liu Z, Madabhushi A, Lu C. Vision Transformers for Computational Histopathology. IEEE Rev Biomed Eng. 2024;17:63-79. https://doi.org/10.1109/RBME.2023.3297604.
17. Farooq H, Saleem S, Aleem I, Iftikhar A, Sheikh UN, Naveed H. Toward interpretable and generalized mitosis detection in digital pathology using deep learning. DIGITAL HEALTH. 2024;10. https://doi.org/10.1177/20552076241255471
18. Mercan, C., Balkenhol, M., Salgado, R. et al. Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer. npj Breast Cancer 8, 120 (2022). https://doi.org/10.1038/s41523-022-00488-w
19. Jaroensri, R., Wulczyn, E., Hegde, N. et al. Deep learning models for histologic grading of breast cancer and association with disease prognosis. npj Breast Cancer 8,113 (2022). https://doi.org/10.1038/s41523-022-00478-y
20. Xu H, Xu Q, Cong F, Kang J, Han C, Liu Z, Madabhushi A, Lu C. Vision Transformers for Computational Histopathology. IEEE Rev Biomed Eng. 2024;17:63-79. doi: 10.1109/RBME.2023.3297604. Epub 2024 Jan 12. PMID: 37478035
21. Ding, R., Hall, J., Tenenholtz, N., & Severson, K. (2023). Improving Mitosis Detection on Histopathology Images Using Large Vision-Language Models. 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1-5 (mitosis VIT) https://doi.org/10.48550/arXiv.2310.07176
22. Li Z, Li X, Wu W, Lyu H, Tang X, Zhou C, Xu F, LuoB, JiangY, LiuXandXiangW (2024), A novel dilated contextual attention module for breast cancer mitosis cell detection. Front. Physiol. 15:1337554. doi: 10.3389/fphys.2024.1337554
23. Fabian Hörst, Moritz Rempe, Lukas Heine, Constantin Seibold, Julius Keyl, Giulia Baldini, Selma Ugurel, Jens Siveke, Barbara Grünwald, Jan Egger, Jens Kleesiek, CellViT: Vision Transformers for precise cell segmentation and classification, Medical Image Analysis, Volume 94, 2024, 103143, ISSN 1361-8415, https://doi.org/10.1016/j.media.2024.103143.
24. Huang, Junjia & Li, Haofeng & Sun, Weijun & Wan, Xiang & Li, Guanbin. (2023). Prompt-Based Grouping Transformer for Nucleus Detection and Classification. 10.1007/978-3-031-43993-3_55. https://doi.org/10.48550/arXiv.2310.14176
25. Roux Ludovic, Racoceanu Daniel, Loménie Nicolas, Kulikova Maria, Irshad Humayun, Klossa Jacques, Capron Frédérique, Genestie Catherine, Le Naour Gilles, Gurcan Metin N, Mitosis detection in breast cancer histological images An ICPR 2012 contest, Journal of Pathology Informatics, Volume 4, Issue 1, 2013, 8, ISSN 2153-3539, https://doi.org/10.4103/2153-3539.112693.
26. Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopfleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H.J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Adam Shephard, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, Yubo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen Yang, Xiyue Wang, Ramona Erber, Andrea Klang, Karoline Lipnik, Pompei Bolfa, Michael J. Dark, Gabriel Wasinger, Mitko Veta, Katharina Breininger,Mitosis domain generalization in histopathology images — The MIDOG challenge, Medical Image Analysis, Volume 84, 2023, 102699, ISSN 1361-8415, https://doi.org/10.1016/j.media.2022.102699.
27. Aksac, A., Demetrick, D.J., Ozyer, T. et al. BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis. BMC Res Notes 12, 82 (2019). https://doi.org/10.1186/s13104-019-4121-7
28. Morphle Labs. (n.d.). Homepage. Morphle Labs. Retrieved [date you accessed the site], from https://www.morphlelabs.com/
29. Rajasekaran Subramanian, R. Devika Rubi, Rohit Tapadia, Katakam Karthik, Mohammad Faseeh Ahmed and Allam Manudeep, “Web based Mitosis Detection on Breast Cancer Whole Slide Images using Faster R-CNN and YOLOv5” International Journal of Advanced Computer Science and Applications (IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131268
30. Wu, W., Liu, H., Li, L., Long, Y., Wang, X., Wang, Z., Li, J., & Chang, Y. (2021). Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0259283.
31. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. ArXiv, abs/2005.12872. https://doi.org/10.1007/978-3-030-58452-8_13.
32. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.
https://doi.org/10.48550/arXiv.1706.03762