Metadichol induces CD14 glycoprotein expression in human embryonic stem cells and fibroblasts
Main Article Content
Abstract
Cluster of differentiation 14 (CD14) is a glycoprotein essential to the immune system that is found primarily on monocytes, macrophages, and other immune cells. Despite its importance, there are no examples in the literature of small compounds that can substantially alter CD14 expression in human embryonic stem cells (hESCs) or fibroblasts. This study addresses this gap by exploring the potential of metadichol, a nanoemulsion of long-chain fatty alcohols, to induce CD14 expression in hESCs. Metadichol has been previously shown in our studies to express CD33 and CD34 as well as all the nuclear receptors and the family of sirtuins and Toll receptors. Using quantitative real-time PCR (qRT‒PCR) and Western blotting, we showed that metadichol significantly upregulated CD14 expression in hESCs (by seventeen-fold) but downregulated it in fibroblasts. This novel finding indicates that metadichol can modulate CD14 expression in a cell type-specific manner, highlighting its potential to enhance stem cell-based therapeutics and advance our understanding of stem cell biology. The implications of these findings are substantial, suggesting new directions for research into the immunomodulatory functions of hESCs and their potential applications in regenerative medicine. Our work highlights the potential of metadichol as a powerful tool for modulating CD14 expression in stem and somatic cells, marking a significant step forward in the field of stem cell research and therapy development.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Zamani F, Zare Shahneh F, Aghebati-Maleki L, Baradaran B. Induction of CD14 expression and differentiation into monocytes or mature macrophages in promyelocytic cell lines: a novel strategy. Adv Pharm Bull. 2013;3(2):329-332. doi:10.5681/apb.2 013.053
3. Liu HZ, Gong JP, Wu CX, Peng Y, Li XH, You HB. The U937 cell line was induced to express CD14 protein by 1,25-dihydroxyvitamin D3 and became sensitive to endotoxin stimulation. Hepatobiliary Pancreat Dis Int. 2005;4(1):84-89.
4. Ichise Y, Saegusa J, Tanaka-Natsui S, et al. Soluble CD14 stimulates pro-inflammatory cytokine production in rheumatoid arthritis fibroblast-like synovial cells through toll-like receptor 4. Cells. 2020;9(7):1689. doi:10.3390/cells9071689
5. Raghavan PR, inventor; Nanorx Inc, assignee. Policosanol nanoparticles. US patents 8,722,093. May 13, 2014; 9,034,383. May 19, 2015; 9,006,292. April 14, 2015.
6. Raghavan PR. Metadichol serves as a natural ligand for the expression of Yamanaka reprogramming factors in human cardiac, fibroblast, and cancer cell lines. Med Res Arch. 2024;12(6). doi:10.18103/mra.v 12i6.5323
7. Raghavan PR. Metadichol stimulates CD14 glycoprotein expression in human embryonic stem cells and fibroblasts. Qeios. Published online 2024. Accessed April 17, 2025.
https://www.qeios.com/read/X9VA1H
8. Hirakawa MP, Tjahjono N, Light YK, et al. The upregulation of CD14 in mesenchymal stromal cells expedites the lipopolysaccharide-induced response and amplifies antibacterial capabilities. iScience. 2022;25(2):103759. doi:10.1016/j.isci.20 22.103759
9. Park HJ, Lee WY, Park C, Hong K, Song H. CD14 serves as a distinctive membrane marker for swine spermatogonial stem cells, governing their development. Sci Rep. 2019;9(1):9980. doi:10.103 8/s41598-019-46000-6
10. Zentelytė A, Žukauskaitė D, Jacerytė I, Borutinskaitė VV, Navakauskienė R. Small chemical therapies enhance the differentiation capacity of human amniotic fluid stem cells. Front Bioeng Biotechnol. 2021;9:623886. doi:10.3389/fbioe.202 1.623886
11. Na K, Oh BC, Jung Y. The complex function of CD14 in innate immunity and tissue equilibrium. Cytokine Growth Factor Rev. 2023;74:100-107. doi:10.1016/j.cytogfr.2023.08.008
12. Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. doi:10.3389/fimmu.2019.02035
13. van den Ancker W, Wijnands PG, Ruben JM, et al. Protocols for the proliferation of CD14(+) progenitors derived from acute myeloid leukemia cells to enhance dendritic cell-mediated immunotherapy. Immunotherapy. 2013;5(11):1183-1190. doi:10.2217/imt.13.125
14. Wu Z, Zhang Z, Lei Z, Lei P. CD14: its biological functions and involvement in disease etiology. Cytokine Growth Factor Rev. 2019;48:24-31. doi:10.1016/j.cytogfr.2019.06.003
15. Tsukamoto H, Takeuchi S, Kubota K, et al. Lipopolysaccharide (LPS)-binding protein enhances CD14-mediated internalization of toll-like receptor 4 and activates the LPS-induced TBK1-IKKϵ-IRF3 signaling pathway. J Biol Chem. 2018;293(26): 10186-10201. doi:10.1074/jbc.M117.796631
16. Di Gioia M, Zanoni I. CD14: not merely a chaperone, but a pivotal participant in inflammation. In: Rossetti C, Peri F, eds. The Role of Toll-Like Receptor 4 in Infectious and Non-Infectious Inflammation. Springer International Publishing; 2021:57-78.
17. Raghavan PR. Metadichol serves as a natural ligand for the expression of Yamanaka reprogramming factors in human cardiac, fibroblast, and cancer cell lines. Med Res Arch. 2024;12(6). doi:10.18103/mra.v 12i6.5323
18. Warwick T, Schulz MH, Günther S, et al. An investigation of the hierarchical regulatory network of the vitamin D-induced transcriptome uncovers novel regulators and demonstrates total VDR dependency in monocytes. Sci Rep. 2021;11(1): 6518. doi:10.1038/s41598-021-86032-5
19. Valdés-López JF, Velilla P, Urcuqui-Inchima S. Vitamin D regulates the expression of toll-like receptors and pro-inflammatory cytokines without influencing Chikungunya virus replication in monocytes and macrophages. Acta Trop. 2022;232:106497. doi:10.1016/j.actatropica.2022.106497
20. Hmama Z, Nandan D, Sly L, Knutson KL, Herrera-Velit P, Reiner NE. The differentiation of myeloid cells produced by 1α,25-dihydroxyvitamin D3 is governed by a signaling complex including the vitamin D receptor and phosphatidylinositol 3-kinase. J Exp Med. 1999;190(11):1583-1594.
21. Chakraborty B, Mondal P, Gajendra P, Mitra M, Das C, Sengupta S. Analyzing the genetic regulation of CD14 by SP1 through the analysis of the peripheral blood mononuclear transcriptome in malaria patients infected with P. falciparum and P. vivax. EBioMedicine. 2018;37:442-452. doi:10.101 6/j.ebiom.2018.09.049
22. Szpirer J, Szpirer C, Riviere M, et al. The SP1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are located together on human chromosomal arm 12q and rat chromosome 7. Genomics. 1991;11(1):168-173. doi:10.1016/0888-7543(91)90114
23. Zhang DE, Hetherington CJ, Tan S, et al. Sp1 is an essential element for the monocytic-specific expression of human CD14. J Biol Chem. 1994;269 (15):11425-11434. doi:10.1016/S0021-9258(19)78141-1
24. Kenakin T. Inverse, versatile, and ligand-specific agonism: issues of receptor conformation. FASEB J. 2001;15(7):598-611. doi:10.1096/fj.00-0438rev
25. Kenakin T. Innovative paradigms in pharmacological research: collateral efficacy and permissive antagonism. Nat Rev Drug Discov. 2005;4(11):919-927. doi:10.1038/nrd1875
26. Carlberg C, Seuter S, Heikkinen S. A comprehensive genome-wide analysis of vitamin D receptor localization and its molecular ramifications. Anticancer Res. 2012;32(1):271-282.
27. Joseph SB, Bradley MN, Castrillo A, et al. LXR-dependent gene expression is crucial for macrophage viability and the innate immune response. Cell. 2004;119(2):299-309.
28. Raghavan PR. Metadichol® is a nano lipid emulsion that activates all 49 nuclear receptors in stem and somatic cells. Arch Clin Biomed Res. 2023;7(4):524-536. doi:10.26502/acbr.50170370.
29. Cheah MT, Chen JY, Sahoo D, Contreras-Trujillo H, Volkmer AK, Scheeren FA, Volkmer JP, Weissman IL. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4725-30. doi: 10.1073/pnas.1424795112
30. Alemán CL, Más R, Hernández C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87.
31. Alemán CL, Ferreiro RM, Puig MN, Guerra IR, Ortega CH, Capote A. Carcinogenicity of policosanol in Sprague Dawley rats: a 24 month study. Teratog Carcinog Mutagen. 1994;14(5):239-249.
32. Alemán CL, Puig MN, Elías EC, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573-578.