Methamphetamine Washout Syndrome: More than Just Catecholamine Depletion?
Main Article Content
Abstract
Methamphetamine (MA) use continues to increase on a global scale. Patients using MA utilize emergency department and hospital resources at a higher rate than other patients due to serious associated medical conditions, including blunt and penetrating trauma, stroke, myocardial infarction, cardiomyopathy, and rhabdomyolysis. Mental health resources are also utilized at a high rate stemming from MA-associated agitation, aggression, psychosis, self-harm, and suicidal ideation. Patients presenting with MA toxicity frequently require a combined team effort of clinicians, nurses, psychiatric workers, and social services prior to final disposition. The phenomenon of “Methamphetamine Washout Syndrome” (MAWS) has been used to describe a period of MA-induced hypersomnolence greater than eight hours at our institution. During this period the patient cannot easily be awakened or interviewed, and they continue to occupy a hospital bed. The etiology of MAWS was initially thought to simply be a result of catecholamine depletion followed by a period of synthesis and restoration. In this report, we investigate this theory and other potential causes of MAWS such as MA neurotoxicity from microglial activation and cytokine release, mitochondrial dysfunction, energy supply disruption, and apoptosis. The effect of MA on sleep is also detailed, and potential treatment options to optimize patient outcome and decrease length of stay are discussed.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Richards JR, Hamidi S, Grant CD, et al. Methamphetamine Use and Emergency Department Utilization: 20 Years Later. J Addict. 2017;2017: 4050932. doi:10.1155/2017/4050932
3. Ciccarone D, Shoptaw S. Understanding Stimulant Use and Use Disorders in a New Era. Med Clin North Am. 2022;106(1):81-97. doi:10.1016/j.mcna.2021.08.010
4. Suto DJ, Xiao J, Bellinghausen AL, et al. Temporal Trends in Methamphetamine Use in Patients Admitted to the Hospital: A Retrospective Cohort Study. J Addict Med. 2024;18(3):339-341. doi:10.1097/ADM.0000 000000001294
5. Fulde GWO, Forster SL. The impact of amphetamine-type stimulants on emergency services. Curr Opin Psychiatry. 2015;28(4):275. doi:10.1097/YCO.0000000000000171
6. Jones CM, Compton WM, Mustaquim D. Patterns and characteristics of methamphetamine use among adults - United States, 2015-2018. MMWR Morb Mortal Wkly Rep. 2020;69(12):317-323. doi:10.15585/mmwr.mm6912a1
7. Gray SD, Fatovich DM, McCoubrie DL, Daly FF. Amphetamine-related presentations to an inner-city tertiary emergency department: a prospective evaluation. Med J Aust. 2007;186(7):336-339. doi:10.5694/j.1326-5377.2007.tb00932.x
8. Redona PT, Woods C, Jackson D, Usher K. Rates and Patterns of Australian Emergency Department Presentations of People Who Use Stimulants: A Systematic Literature Review. Cureus. 2022;14(10):e30429. doi:10.7759/cureus.30429
9. Richards JR, Albertson TE, Derlet RW, Lange RA, Olson KR, Horowitz BZ. Treatment of toxicity from amphetamines, related derivatives, and analogues: a systematic clinical review. Drug Alcohol Depend. 2015;150:1-13. doi:10.1016/j.drugalcdep.2015.01.040
10. Gossop MR, Bradley BP, Brewis RK. Amphetamine withdrawal and sleep disturbance. Drug Alcohol Depend. 1982;10(2):177-183. doi:10.1016/0376-8716(82)90010-2
11. Richards JR, Derlet RW. Emergency Department Hallway Care From the Millennium to the Pandemic: A Clear and Present Danger. J Emerg Med. 2022;63(4):565-568. doi:10.1016/j.jemermed.2022.07.011
12. Van Der Linden MC, Van Loon M, Gaakeer MI, Richards JR, Derlet RW, Van Der Linden N. A different crowd, a different crowding level? The predefined thresholds of crowding scales may not be optimal for all emergency departments. Int Emerg Nurs. 2018;41:25-30. doi:10.1016/j.ienj.2018.05.004
13. Romann V, Illgen M, Derungs A, et al. Presentations with reported methamphetamine use to an urban emergency department in Switzerland. Swiss Med Wkly. 2021;151(5152):w30099-w30099. doi:10.4414/SMW.2021.w30099
14. Edmundson J, Skoblenick K, Rosychuk RJ. Flow Through the Emergency Department for Patients Presenting with Substance Use Disorder in Alberta, Canada. West J Emerg Med Integrating Emerg Care Popul Health. 2023;24(4). doi:10.5811/westjem.60350
15. Trabulsy ME. Cocaine washed out syndrome in a patient with acute myocardial infarction. Am J Emerg Med. 1995;13(5):538-539. doi:10.1016/0735-6757(95)90166-3
16. Sporer KA, Lesser SH. Cocaine washed-out syndrome. Ann Emerg Med. 1992;21(1):112. doi:10.1016/S0196-0644(05)82275-9
17. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104(7):1085-1099. doi:10.1111/j.1360-0443.2009.02564.x
18. Baig AM. DARK Side of Amphetamine and Analogues: Pharmacology, Syndromic Manifestation, and Management of Amphetamine Addiction. ACS Chem Neurosci. 2018;9(10):2299-2303. doi:10.1021/acschemneuro.8b00137
19. Regmi S, Kedia SK, Schmidt M, Mahmood A, Lugemwa T, Dillon PJ. Methamphetamine-Induced Wakefulness and Sleep Management: A Qualitative Analysis of Online Narratives. J Psychoactive Drugs. 2024;56(4):595-602. doi:10.1080/02791072.2023.2246458
20. Rechtschaffen A, Maron L. The effect of amphetamine on the sleep cycle. Electroencephalogr Clin Neurophysiol. 1964;16(5):438-445. doi:10.1016/0013-4694(64)90086-0
21. Berro LF, Overton JS, Rowlett JK. Methamphetamine-Induced Sleep Impairments and Subsequent Slow-Wave and Rapid Eye Movement Sleep Rebound in Male Rhesus Monkeys. Front Neurosci. 2022;16. doi:10.3389/fnins.2022.866971
22. Borgatti DA, Rowlett JK, Berro LF. Effects of methamphetamine on actigraphy-based sleep parameters in female rhesus monkeys: Orexin receptor mechanisms. Drug Alcohol Depend. 2024;259:111285. doi:10.1016/j.drugalcdep.2024.111285
23. Samanta S, Bagchi D, Gold M, Badgaiyan R, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag. 2024;Volume 17:3485-3501. doi:10.2147/PRBM.S473310
24. Boutrel B, Koob GF. What Keeps Us Awake: the Neuropharmacology of Stimulants and Wakefulness Promoting Medications. Sleep. 2004;27(6):1181-1194. doi:10.1093/sleep/27.6.1181
25. Krueger JM, Majde JA. Humoral Links between Sleep and the Immune System. Ann N Y Acad Sci. 2003;992(1):9-20. doi:10.1111/j.1749-6632.2003. tb03133.x
26. Vrajová M, Šlamberová R, Hoschl C, Ovsepian SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep. 2021;44(6):zsab001. doi:10.1093/sleep/zsab001
27. Ashok AH, Mizuno Y, Volkow ND, Howes OD. Association of Stimulant Use With Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2017;74(5):511-519. doi:10.1001/jamapsychiatry.2017.0135
28. Bousman CA, Glatt SJ, Everall IP, Tsuang MT. Genetic association studies of methamphetamine use disorders: A systematic review and synthesis. Am J Med Genet B Neuropsychiatr Genet. 2009;150B (8):1025-1049. doi:10.1002/ajmg.b.30936
29. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci Off J Soc Neurosci. 2001;21(5):1787-1794. doi:10.1523/JNEUROSCI.21-05-01787.2001
30. Rothballer AB. The effect of phenylephrine, methamphetamine, cocaine, and serotonin upon the adrenaline-sensitive component of the reticular activating system. Electroencephalogr Clin Neurophysiol. 1957;9(3):409-417. doi:10.1016/0013-4694(57)90030-5
31. Watson R, Hartmann E, Schildkraut JJ. Amphetamine withdrawal: affective state, sleep patterns, and MHPG excretion. Am J Psychiatry. 1972;129(3):263-269. doi:10.1176/ajp.129.3.263
32. Ares-Santos S, Granado N, Moratalla R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med. 2013;273(5):437-453. doi:10.1111/joim.12049
33. Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol. 2009;88:101-119. doi:10.1016/S0074-7742(09)88005-7
34. Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol. 2021;204:102112. doi:10.1016/j.pneurobio.2021.102112
35. Moratalla R, Ares-Santos S, Granado N. Neurotoxicity of Methamphetamine. In: Kostrzewa RM, ed. Handbook of Neurotoxicity. Springer International Publishing; 2021:1-30. doi:10.1007/978-3-030-71519-9_123-1
36. Nopparat C, Porter JE, Ebadi M, Govitrapong P. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res. 2010;49(4):382-389. doi:10.1111/j.1600-079X.2010.00805.x
37. Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009;10(3):199-210. doi:10.1038/nrn2576
38. Brodie BB, Pletscher A, Shore PA. Evidence that serotonin has a role in brain function. Science. 1955;122(3177):968. doi:10.1126/science.122.3177.968
39. Dugovic C. Functional activity of 5-HT2 receptors in the modulation of the sleep/wakefulness states. J Sleep Res. 1992;1(3):163-168. doi:10.1111/j.1365-2869.1992.tb00032.x
40. Clark KH, Wiley CA, Bradberry CW. Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res. 2013;23(2):174-188. doi:10.1007/s12640-012-9334-7
41. Granado N, Lastres-Becker I, Ares-Santos S, et al. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia. 2011;59(12):1850-1863. doi:10.1002/glia.21229
42. Thomas DM, Francescutti-Verbeem DM, Kuhn DM. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J Neurochem. 2008;105(3):605-616. doi:10.1111/j.1471-4159.2007.05155.x
43. Öztürk MM, Emgård J, García-Revilla J, et al. The role of microglia in the prion-like transmission of protein aggregates in neurodegeneration. Brain Commun. 2025;7(2):fcaf087. doi:10.1093/braincomms/fcaf087
44. Schmidt MA, Wisor JP. Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence. Neurosci Lett. 2012;513(2):209-213. doi:10.1016/j.neulet.2012.02.040
45. Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities. Ann N Y Acad Sci. 2010; 1187(1):101-121. doi:10.1111/j.1749-6632.2009. 05141.x
46. Moldofsky H, Lue FA, Eisen J, Keystone E, Gorczynski RM. The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom Med. 1986;48(5):309-318. doi:10.1097/00006842-19 8605000-00001
47. Boireau A, Bordier F, Dubédat P, Doble A. Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission. Neurosci Lett. 1995;195(1):9-12. doi:10.1016/0304-3940(95) 11765-O
48. Luk WP, Zhang Y, White TD, et al. Adenosine: a mediator of interleukin-1beta-induced hippocampal synaptic inhibition. J Neurosci Off J Soc Neurosci. 1999;19(11):4238-4244. doi:10.1523/JNEUROSCI.19-11-04238.1999
49. Lv D, Zhang M, Jin X, et al. The Body Mass Index, Blood Pressure, and Fasting Blood Glucose in Patients With Methamphetamine Dependence. Medicine (Baltimore). 2016;95(12):e3152. doi:10.1097/MD.0000000000003152
50. McMahon EM, Feldman JM, Schanberg SM. Further studies of methamphetamine-induced insulin release. Toxicol Appl Pharmacol. 1975;32(1):62-72. doi:10.1016/0041-008X(75)90195-7
51. Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK. Substrates of Energy Metabolism Attenuate Methamphetamine-Induced Neurotoxicity in Striatum. J Neurochem. 1998;71(2):613-621. doi:10.1046/j.1471-4159.1998.71020613.x
52. Muneer PMA, Alikunju S, Szlachetka AM, Murrin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener. 2011;6(1):23. doi:10.1186/1750-1326-6-23
53. Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev. 2009;60(2):379-407. doi:10.1016/j.brainresrev.2009.03.002
54. Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol. 2021;344:113795. doi:10.1016/j.expneur ol.2021.113795
55. Cadet JL, Jayanthi S, Deng X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox Res. 2005;8(3):199-206. doi:10.1007/BF03033973
56. Lee C, Bae HJ, Jang JH, Park GH. Investigating the Roles of Orexinergic System in Methamphetamine-induced Addiction. FASEB J. 2020;34(S1):1-1. doi:10.1096/fasebj.2020.34.s1.09577
57. Sakurai T, Mieda M, Tsujino N. The orexin system: roles in sleep/wake regulation. Ann N Y Acad Sci. 2010;1200(1):149-161. doi:10.1111/j.1749-6632.2010.05513.x
58. Guo L, Hu A, Zhao X, Xiang X. Reduction of Orexin-A Is Associated With Anxiety and the Level of Depression of Male Methamphetamine Users During the Initial Withdrawal Period. Front Psychiatry. 2022;13:900135. doi:10.3389/fpsyt.2022.900135
59. Berro LF, Moreira-Junior E da C, Rowlett JK. The dual orexin receptor antagonist almorexant blocks the sleep-disrupting and daytime stimulant effects of methamphetamine in rhesus monkeys. Drug Alcohol Depend. 2021;227:108930. doi:10.1016/j.drugalc dep.2021.108930
60. Catecholamine Synthesis - an overview | Science Direct Topics. Accessed March 17, 2025. https://www.sciencedirect.com/topics/medicine-and-dentistry/catecholamine-synthesis
61. Wakade AR, Wakade TD, Malhotra RK. Restoration of catecholamine content of previously depleted adrenal medulla in vitro: importance of synthesis in maintaining the catecholamine stores. J Neurochem. 1988;51(3):820-829. doi:10.1111/j.1471-4159.19 88.tb01817.x
62. Werb D, Kerr T, Zhang R, Montaner JS, Wood E. Methamphetamine use and malnutrition among street-involved youth. Harm Reduct J. 2010;7:5. doi:10.1186/1477-7517-7-5
63. McGregor C, Srisurapanont M, Mitchell A, Wickes W, White JM. Symptoms and sleep patterns during inpatient treatment of methamphetamine withdrawal: A comparison of mirtazapine and modafinil with treatment as usual. J Subst Abuse Treat. 2008;35(3):334-342. doi:10.1016/j.jsat.2007.12.003
64. Gruner JA, Marcy VR, Lin YG, Bozyczko-Coyne D, Marino MJ, Gasior M. The Roles of Dopamine Transport Inhibition and Dopamine Release Facilitation in Wake Enhancement and Rebound Hypersomnolence Induced by Dopaminergic Agents. Sleep. 2009;32(11):1425-1438. doi:10.1093/sleep/32.11.1425
65. London ED, Berman SM, Voytek B, et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry. 2005;58(10):770-778. doi:10.1016/j.biopsych.2005.04.039
66. Wagner DJ, Sager JE, Duan H, Isoherranen N, Wang J. Interaction and Transport of Methamphetamine and its Primary Metabolites by Organic Cation and Multidrug and Toxin Extrusion Transporters. Drug Metab Dispos. 2017;45(7):770-778. doi:10.1124/dmd.116.074708
67. Huang W, Czuba LC, Isoherranen N. Mechanistic PBPK Modeling of Urine pH Effect on Renal and Systemic Disposition of Methamphetamine and Amphetamine. J Pharmacol Exp Ther. 2020;373(3):488-501. doi:10.1124/jpet.120.264994
68. Reddi BAJ. Why is saline so acidic (and does it really matter?). Int J Med Sci. 2013;10(6):747-750. doi:10.7150/ijms.5868
69. Mehta LK, Hegde A, Thomas A, Virdi MS. Acidogenic Potential of Packaged Fruit Juices and its Effect on Plaque and Salivary pH. Int J Clin Pediatr Dent. 2019;12(4):312-317. doi:10.5005/jp-journals-10005-1644
70. Sprague JE, Riley CL, Mills EM. Chapter 36 - Body temperature regulation and drugs of abuse. In: Romanovsky AA, ed. Handbook of Clinical Neurology. Vol 157. Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II. Elsevier; 2018:623-633. doi:10.1016/B978-0-444-64074-1.00036-7
71. Pang L, Wang Y. Overview of blood-brain barrier dysfunction in methamphetamine abuse. Biomed Pharmacother. 2023;161:114478. doi:10.1016/j.biopha.2023.114478
72. Song R, Liu C, Peng M, et al. CX3CL1-CX3CR1 pathway mediates hyperthermia-induced microglial processes retraction. Brain Behav Immun. Published online March 10, 2025. doi:10.1016/j.bbi.2025.03.007
73. Takahashi S, Krueger JM. Inhibition of tumor necrosis factor prevents warming-induced sleep responses in rabbits. Am J Physiol. 1997;272(4 Pt 2):R1325-1329. doi:10.1152/ajpregu.1997.272.4.R1325
74. Kiyatkin EA, Sharma HS. Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature. CNS Neurol Disord - Drug Targets. 15(9):1129-1138. doi:10.2174/1871527315666160920112445
75. Ali SF, Newport GD, Holson RR, Slikker W, Bowyer JF. Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res. 1994;658(1):33-38. doi:10.1016/S0006-8993(09) 90007-5
76. Delle Donne KT, Sonsalla PK. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation. J Pharmacol Exp Ther. 1994; 271(3):1320-1326.
77. Sinchai T, Plasen S, Sanvarinda Y, et al. Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo. Neurosci Lett. 2011;502(1):65-69. doi:10.1016/j.neulet.2011.07.026
78. Zhao WX, Zhang JH, Cao JB, et al. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity. J Neuroinflammation. 2017;14(1):17. doi:10.1186/s12974-016-0781-6
79. Tripathy D, Grammas P. Acetaminophen inhibits neuronal inflammation and protects neurons from oxidative stress. J Neuroinflammation. 2009;6(1):10. doi:10.1186/1742-2094-6-10