Spikeotherapeutics: the Cholinergic Anti-inflammatory Pathway, the Vagus Nerve and Dysautonomia: is Nicotine an answer?

Main Article Content

Robyn Cosford

Abstract

Severe COVID-19 is characterised by immune dysregulation and a highly inflammatory cytokine storm with symptoms of dysautonomia. It has been proposed that this is at least partially a result of dysregulation of the cholinergic anti-inflammatory pathway and that nicotine may be a useful therapeutic intervention. Post Acute COVID Syndrome (also known as ‘Long COVID’) and Post COVID Vaccination Syndrome are being increasingly recognised and are also characterised by prominent inflammatory markers and dysautonomia. A narrative review of the literature found the actions of the cholinergic system are profoundly anti-inflammatory and act via the α7nACh receptors. The spike protein has been demonstrated to contain an amino acid sequence near the Receptor Binding Domain that has homology with a-1 neurotoxins and is demonstrated in silico to interact with α7nACh, impairing the cholinergic anti-inflammatory system. Nicotine has been proposed as having a possible therapeutic role in mitigating this effect. However, its place is limited due to widespread nicotine actions and significant adverse effects in chronic dosing. Other potential therapeutic interventions addressing background chronic sympathetic nervous system activation and dysautonomia are therefore considered for modulation of the cholinergic system in the management of Post Acute COVID Syndrome/ Post Acute COVID Vaccination Syndrome in the stead of nicotine.

Keywords: Cholinergic Anti-inflammatory Pathway, nicotine, sympathetic activation, dysautonomia, spike protein, a-1 neurotoxin, spikeopathy, anticholinesterases, vagal nerve stimulation

Article Details

How to Cite
COSFORD, Robyn. Spikeotherapeutics: the Cholinergic Anti-inflammatory Pathway, the Vagus Nerve and Dysautonomia: is Nicotine an answer?. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6530>. Date accessed: 17 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6530.
Section
Review Articles

References

1. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287

2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0

3. Carmona-Torre F, Mínguez-Olaondo A, López-Bravo A, et al. Dysautonomia in COVID-19 patients: A Narrative reviewon clinical course, diagnostic and therapeutic strategies. Frontiers in Neurology. 2022;13. doi:10.3389/fneur.2022.886609

4. Farsalinos K, Bagos PG, Giannouchos T, Niaura R, Barbouni A, Poulas K. Smoking prevalence among hospitalized COVID-19 patients and its association with disease severity and mortality: an expanded re-analysis of a recent publication. Harm Reduct J. 2021;18(1):9. doi:10.1186/s12954-020-00437-5

5. Langley JN. On the reaction of cells and nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol. 1905;33:374-413.

6. Dale H. Transmission of nervous effects by acetylcholine: Harvey Lecture, May 20, 1937. Bull N Y Acad Med. 1937;13:379-396.

7. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-859. doi:10.1038/nature01321

8. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2002;421(6921): 384-388. doi:10.1038/nature01339

9. Farsalinos K, Eliopoulos E, Leonidas DD, Papadopoulos GE, Tzartos S, Poulas K. Nicotinic cholinergic system and COVID-19: in silico identification of an interaction between SARS-CoV-2 and nicotinic receptors with potential therapeutic targeting implications. Int J Mol Sci. 2020;21(16):5807. doi:10.3390/ijms21165807

10. O’Brien BCV, Weber L, Hueffer K, Weltzin MM. SARS-CoV-2 spike ectodomain targets α7 nicotinic acetylcholine receptors. Journal of Biological Chemistry. 2023;299(5):104707. doi:10.1016/j.jbc.2023.104707

11. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287

12. Yuan M, Han B, Xia Y, Liu Y, Wang C, Zhang C. Augmentation of peripheral lymphocyte-derived cholinergic activity in patients with acute ischemic stroke. BMC Neurology. 2019;19(1). doi:10.1186/s12883-019-1481-5

13. Farsalinos K, Niaura R, Houezec JL, et al. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicology Reports. 2020;7:658-663. doi:10.1016/j.toxrep.2020.04.012

14. Patterson BK, Seethamraju H, Dhody K, et al. CCR5 inhibition in critical COVID-19 patients decreases inflammatory cytokines, increases CD8 T-cells, and decreases SARS-CoV2 RNA in plasma by day 14. International Journal of Infectious Diseases. 2020;103:25-32. doi:10.1016/j.ijid.2020.10.101

15. Krauson AJ, Casimero FVC, Siddiquee Z, Stone JR. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. Npj Vaccines. 2023;8(1). doi:10.1038/s41541-023-00742-7

16. Brogna C, Cristoni S, Marino G, et al. Detection of recombinant spike protein in the blood of individuals vaccinated against SARS-CoV-2: possible molecular mechanisms. Proteomics Clin Appl. Published online August 31, 2023. doi:10.1002/prca.202300048

17. Bhattacharjee B, Lu P, Monteiro VS, et al. Immunological and antigenic signatures associated with chronic illnesses after COVID-19 vaccination. medRxiv. Preprint posted online February 18, 2025. doi:10.1101/2025.02.18.25322379

18. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2013 Aug;62(8):1214-22. doi: 10.1136/gutjnl-2012-302550. Epub 2012 Sep 29. PMID: 23023166; PMCID: PMC3711371

19. Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X, Peng J, Zhang P. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. Int Immunopharmacol. 2015;29:504–512. doi: 10.1016/j.intimp.2015.10.005.

20. Tillman TS, Xu Y, Tang P. Impact of SARS-CoV-2 spike protein on α7 nicotinic acetylcholine receptor in cells. Biophys J . 2022;121:243a–244a. doi: 10.1016/j.bpj.2021.11.1520

21. Jiang Y, Ma H, Wang X, Wang Z, Yang Y, Li L, Feng T. Protective effect of the α7 nicotinic receptor agonist PNU-282987 on dopaminergic neurons against 6-hydroxydopamine, regulating anti-neuroinflammatory and the immune balance pathways in rat. Front Aging Neurosci. 2021;12:606927. doi: 10.3389/fnagi.2020.606927.

22. Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X, Peng J, Zhang P. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. Int Immunopharmacol. 2015;29:504–512. doi: 10.1016/j.intimp.2015.10.005

23. Alexandris N., Lagoumintzis G., Chasapis C.T., Leonidas D.D., Papadopoulos G.E., Tzartos S.J., Tsatsakis A., Eliopoulos E., Poulas K., Farsalinos K. Nicotinic cholinergic system and COVID-19: Toxicol. Rep. 2021;8:73–83. doi: 10.1016/j.toxrep.2020.12.013

24. Nadwa EH, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Albogami SM, Alorabi M, Batiha GE, De Waard M. Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. Naunyn Schmiedebergs Arch Pharmacol. 2023 Mar;396(3): 453-468. doi: 10.1007/s00210-022-02346-9. Epub 2022 Dec 3.

25. Ibid

26. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers, in Nicotine psychopharmacology. Springer; 2009. pp. 29–60

27. Talhout R, et al. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8(2):613–28. doi: 10.3390/ijerph8020613.

28. Pomerleau OF. Nicotine and the central nervous system: biobehavioral effects of cigarette smoking. Am J Med. 1992;93(1A):2S–7S. doi: 10.1016/0002-9343(92)90619-M.

29. Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol. 2009;49:57–71. doi: 10.1146/annurev.pharmtox.48.113006.09474

30. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003 Jan 23;421(6921):384-8. doi: 10.1038/nature01339. Epub 2002 Dec 22. PMID: 12508119

31. Hansen MK, O'Connor KA, Goehler LE, et al. The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol 2001;280:R929–34

32. Buijs RM, van d V, Garidou ML, et al. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 2008;3:e3152.

33. Farsalinos K., Niaura R., Le Houezec J., Barbouni A., Tsatsakis A., Kouretas D., Vantarakis A., Poulas K. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol. Rep. 2020;7:658–663. doi: 10.1016/j.toxrep.2020.04.012.

34. Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011;334:98–101.

35. Hong GS, Zillekens A, Schneiker B, Pantelis D, de Jonge WJ, Schaefer N, Kalff JC, Wehner S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil. 2019;31:e13501. doi: 10.1111/nmo.13501.

36. Nadwa E.H., Al-Kuraishy H.M., Al-Gareeb A.I., Elekhnawy E., Albogami S.M., Alorabi M., Batiha G.E., De Waard M. Cholinergic dysfunction in COVID-19: Frantic search and hoping for the best. Naunyn Schmiedebergs Arch. Pharmacol. 2023; 396:453–468. doi: 10.1007/s00210-022-02346-9

37. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9:418–428. doi: 10.1038/nri2566.

38. Ishise H, Asanoi H, Ishizaka S, et al. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J Appl Physiol. 1998;84(4):1234–41. doi: 10.1152/jappl.1998.84.4.1234.

39. Theoharides T.C. The impact of psychological stress on mast cells. Ann. Allergy Asthma Immunol. 2020;125:388–392. doi: 10.1016/j.anai.2020.07.007.

40. Niraula A., Sheridan J.F., Godbout J.P. Microglia Priming with Aging and Stress. Neuropsychopharmacology. 2016;42: 318–333. doi: 10.1038/npp.2016.185.

41. Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP. The nicotinic acetylcholine receptor: Structure and autoimmune pathology. Critical Reviews in Biochemistry and Molecular Biology. 1994;29(2):69-123. doi:10.3109/10409239409086798

42. Wang Y, Pereira EFR, Maus ADJ, et al. Human Bronchial Epithelial and Endothelial Cells Express α7 Nicotinic Acetylcholine Receptors. Molecular Pharmacology. 2001;60(6):1201-1209. doi:10.1124/mol.60.6.1201.

43. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, et al. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol. 2009;78:703-711.

44. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482-491.

45. Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol. 2014;89(1):1-11. doi:10.1016/j.bcp.2014.01.029

46. Seguela P, Wadiche J, Dinely-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993;13(2):596-604.

47. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384-388.

48. Papke RL, Bencherif M, Lippiello P. An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the α7 subtype. Neurosci Lett. 1996;213:201-204.

49. Lewis AS, van Schalkwyk GI, Bloch MH. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: a translational meta-analysis of rodent and human studies. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:45-53. doi:10.1016/j.pnpbp.2017.01.001.

50. Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, et al. A summary of in vitro and in vivo studies evaluating the impact of E-Cigarette exposure on living organisms and the environment. International Journal of Molecular Sciences. 2020;21(2):652. doi:10.3390/ijms21020652.

51. Qiu F, Liang CL, Liu H, et al. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget. 2016; 8(1):268-284. doi:10.18632/oncotarget.13613.

52. Salehi Z, Ghoochani BFNM, Nourian YH, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. Allergy Asthma and Clinical Immunology. 2023;19(1). doi:10.1186/s13223-023-00797-0.

53. Hallquist N, Hakki A, Wecker L, Friedman H, Pross S. Differential effects of nicotine and aging on splenocyte proliferation and the production of TH1- versus TH2-Type cytokines. Proceedings of the Society for Experimental Biology and Medicine. 2000;224(3):141-146. doi:10.1046/j.1525-1373.2000.22412.x.

54. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2002;421(6921): 384-388. doi:10.1038/nature01339.

55. Guinet E, Yoshida K, Nouri-Shirazi M. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters. 2004;95(1):45-55. doi:10.1016/j.imlet.2004.06.003.

56. Hu SX, Sui HX, Jin HJ, et al. Lipopolysaccharide and dose of nicotine determine the effects of nicotine on murine bone marrow-derived dendritic cells. Molecular Medicine Reports. 2012;5(4):1005-1010. doi:10.3892/mmr.2012.751.

57. AlQasrawi D, Abdelli LS, Naser SA. Mystery Solved: Why Smoke Extract Worsens Disease in Smokers with Crohn’s Disease and Not Ulcerative Colitis? Gut MAP! Microorganisms. 2020;8(5):666. doi:10.3390/microorganisms8050666.

58. Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T. Activation of the Cholinergic Anti-Inflammatory system by nicotine attenuates neuroinflammation via suppression of TH1 and TH17 responses. The Journal of Immunology. 2009;183(10):6681-6688. doi:10.4049/jimmunol.0902212.

59. Tao X, Li H, Xing Y, et al. Nicotine Protects Dendritic Cells from Apoptosis and Support DCs-dependent CD4+ T-cell Priming in vitro. Indian Journal of Pharmaceutical Sciences. 2019;81(6). doi:10.36468/pharmaceutical-sciences.597.

60. De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Del Carmen Esandi M. Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sciences. 2009;85(11-12):444-449. doi:10.1016/j.lfs.2009.07.010.

61. Nordman JC, Muldoon P, Clark S, Damaj MI, Kabbani N. TheΑ4 nicotinic receptor promotes CD4+T-Cell proliferation and a helper T-Cell immune response. Molecular Pharmacology. 2013;85(1):50-61. doi:10.1124/mol.113.088484.

62. Iho S, Tanaka Y, Takauji R, et al. Nicotine induces human neutrophils to produce IL-8 through the generation of peroxynitrite and subsequent activation of NF-κB. Journal of Leukocyte Biology. 2003;74(5):942-951. doi:10.1189/jlb.1202626.

63. Petri B, Sanz MJ. Neutrophil chemotaxis. Cell Tissue Res. 2018;371(3):425-436. doi:10.1007/s00441-017-2776-8.

64. Mutua V, Gershwin LJ. A review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinical Reviews in Allergy & Immunology. 2020;61(2):194-211. doi:10.1007/s12016-020-08804-7.

65. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287.

66. Mishra NC, Rir-Sima-Ah J, Boyd RT, et al. Nicotine Inhibits FcεRI-Induced Cysteinyl Leukotrienes and Cytokine Production without Affecting Mast Cell Degranulation Through α7/α9/α10-Nicotinic Receptors. The Journal of Immunology. 2010;185(1):588-596. doi:10.4049/jimmunol.0902227.

67. Yamamoto T, Kodama T, Lee J, et al. Anti-Allergic Role of Cholinergic Neuronal Pathway via α7 Nicotinic ACh Receptors on Mucosal Mast Cells in a Murine Food Allergy Model. PLoS ONE. 2014;9(1):e85888. doi:10.1371/journal.pone.0085888.

68. Lopes F, Graepel R, Reyes JL, Wang A, Petri B, McDougall JJ, Sharkey KA, McKay DM. Involvement of Mast Cells in α7 Nicotinic Receptor Agonist Exacerbation of Freund's Complete Adjuvant-Induced Monoarthritis in Mice. Arthritis Rheumatol. 2016 Feb;68(2):542-52. doi: 10.1002/art.39411.

69. Mishra NC, Rir-Sima-Ah J, Boyd RT, et al. Nicotine Inhibits FcεRI-Induced Cysteinyl Leukotrienes and Cytokine Production without Affecting Mast Cell Degranulation Through α7/α9/α10-Nicotinic Receptors. The Journal of Immunology. 2010;185 (1):588-596. doi:10.4049/jimmunol.0902227.

70. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000;61(1):75-111.

71. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699-729. doi:10.1146/annurev.pharmtox.47.120505.105214.

72. Posadas I, López-Hernández B, Ceña V. Nicotinic receptors in neurodegeneration. Curr Neuropharmacol. 2013;11(3):298-314. doi:10.2174/1570159X11311030005.

73. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287.

74. Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res. 1989;79:157-163.

75. Collins AC, Salminen O, Marks MJ, Whiteaker P, Grady SR. The road to discovery of neuronal nicotinic cholinergic receptor subtypes. Handb Exp Pharmacol. 2009:85-112.

76. Gotti C, Hanke W, Maury K, et al. Pharmacology and Biophysical Properties of α7 and α7 ‐ α8 α‐Bungarotoxin Receptor Subtypes Immunopurified from the Chick Optic Lobe. European Journal of Neuroscience. 1994;6(8):1281-1291. doi:10.1111/j.1460-9568.1994.tb00318.x.

77. Papke RL, Dwoskin LP, Crooks PA. The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. J Neurochem. 2007;101:160-167.

78. Campling BG, Kuryatov A, Lindstrom J. Acute activation, desensitization and smoldering activation of human acetylcholine receptors. PLoS One. 2013;8:e79653.

79. Papke RL, Trocme-Thibierge C, Guendisch D, Al Rubaiy SAA, Bloom SA. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists. J Pharmacol Exp Ther. 2011;337:367-379.

80. Jones MV, Westbrook GL. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 1996;19:96-101.

81. Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther. 2001;92:89-108.

82. Pirie PL, Murray DM, Luepker RV. Gender differences in cigarette smoking and quitting in a cohort of young adults. American Journal of Public Health. 1991;81(3):324-327. doi:10.2105/ajph.81.3.324.

83. Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. Allergy Asthma Clin Immunol. 2023;19(1):49. doi:10.1186/s13223-023-00797-0.

84. Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. American Journal of Clinical Nutrition. 2008;87(4):801-809. doi:10.1093/ajcn/87.4.801.

85. Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. Allergy Asthma Clin Immunol. 2023;19(1):49. doi:10.1186/s13223-023-00797-0.

86. Sinha-Hikim AP, Sinha-Hikim I, Friedman TC. Connection of nicotine to Diet-Induced Obesity and Non-Alcoholic fatty liver Disease: Cellular and Mechanistic Insights. Frontiers in Endocrinology. 2017;8. doi:10.3389/fendo.2017.00023.

87. Friedman TC, Sinha-Hikim I, Parveen M, et al. Additive effects of nicotine and High-Fat diet on hepatic steatosis in male mice. Endocrinology. 2012;153(12):5809-5820. doi:10.1210/en.2012-1750.

88. Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. Allergy Asthma Clin Immunol. 2023;19(1):49. doi:10.1186/s13223-023-00797-0.

89. Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sciences. 2012;91(21-22):1058-1064. doi:10.1016/j.lfs.2012.06.032.

90. Cluette-Brown J, Mulligan J, Doyle K, Hagan S, Osmolski T, Hojnacki J. Oral nicotine induces an atherogenic lipoprotein profile. Experimental Biology and Medicine. 1986;182(3):409-413. doi:10.3181/00379727-182-3-rc1.

91. Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sciences. 2012;91(21-22):1058-1064. doi:10.1016/j.lfs.2012.06.032.

92. Lau PP, Li L, Merched AJ, Zhang AL, Ko KWS, Chan L. Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in Low-Density Lipoprotein Receptor−/−Mice. Arteriosclerosis Thrombosis and Vascular Biology. 2005;26(1):143-149. doi:10.1161/01.atv.0000193510.19000.10.

93. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287.

94. Mercado C, Jaimes EA. Cigarette smoking as a risk factor for atherosclerosis and renal disease: Novel pathogenic insights. Current Hypertension Reports. 2007;9(1):66-72. doi:10.1007/s11906-007-0012-8.

95. Zhang S, Day I, Ye S. Nicotine induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis. 2001; 154(2):277-283. doi:10.1016/s0021-9150(00)00475-5.

96. Batiha GES, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM. Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology. 2022;30(6):1993-2001. doi:10.1007/s10787-022-01070-3.

97. Al-Kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Alexiou A, Batiha GE. Niclosamide for COVID-19: bridging the gap. Mol Biol Rep. 2021;18:1-8.

98. Changeux JP, Amoura Z, Rey FA, Miyara M. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications. C R Biol. 2020;343:33-39.

99. Oliveira ASF, Goulielmaki M, Peluso I, et al. A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors. Biophys J. 2021;120:983-993.

100. Godellas NE, Cymes GD, Grosman C. An experimental test of the nicotinic hypothesis of COVID-19. Proc Natl Acad Sci U S A. 2022;119(44):e2204242119. doi:10.1073/pnas.2204242119.

101. Goldstein DS. The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res. 2020;30:299-315. doi:10.1007/s10286-020-00714-0.

102. Rocha EA, Mehta N, Távora-Mehta MZP, Roncari CF, De Lima Cidrão AA, Elias J. Disautonomia: uma condição esquecida – parte 1. Arquivos Brasileiros De Cardiologia. 2021;116(4):814-835. doi:10.36660/abc.20200420.

103. Fedorowski A, Fanciulli A, Raj SR, Sheldon R, Shibao CA, Sutton R. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol. 2024;21(6):379-395. doi:10.1038/s41569-023-00962-3.

104. Rangon CM, Krantic S, Moyse E, Fougère B. The vagal autonomic Pathway of COVID-19 at the crossroad of Alzheimer’s Disease and Aging: A Review of knowledge. Journal of Alzheimer S Disease Reports. 2020;4(1):537-551. doi:10.3233/adr-200273.

105. Carmona-Torre F, Mínguez-Olaondo A, López-Bravo A, et al. Dysautonomia in COVID-19 patients: A Narrative review on clinical course, diagnostic and therapeutic strategies. Frontiers in Neurology. 2022;13. doi:10.3389/fneur.2022.886609.

106. Kwon CY. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. International Journal of Environmental Research and Public Health. 2023;20(2):909. doi:10.3390/ijerph20020909.

107. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. doi:10.3390/biomedicines11082287.

108. Letsinger AC, Ward JM, Fannin RD, et al. Nicotine exposure decreases likelihood of SARS-CoV-2 RNA expression and neuropathology in the hACE2 mouse brain but not moribundity. Scientific Reports. 2023;13(1). doi:10.1038/s41598-023-29118-6.

109. Labro G, Dudoignon E, Le Guen M, et al. Nicotine patches in patients on mechanical ventilation for severe COVID-19: a randomized, double-blind, placebo-controlled, multicentre trial. Intensive Care Med. 2022. doi:10.1007/s00134-022-06721-1.

110. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. The Lancet Infectious Diseases. 2021;22(4):e102-e107. doi:10.1016/s1473-3099(21)00703-9.

111. Liviero F, Scapellato ML, Volpin A, et al. Long term follow-up of heart rate variability in healthcare workers with mild COVID-19. Frontiers in Neurology. 2024;15. doi:10.3389/fneur.2024.1403551.

112. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): Similarities and differences. Pathology - Research and Practice. 2023;246:154497. doi:10.1016/j.prp.2023.154497.

113. Semmler A, Mundorf AK, Kuechler AS, et al. Chronic Fatigue and Dysautonomia following COVID-19 Vaccination Is Distinguished from Normal Vaccination Response by Altered Blood Markers. Vaccines. 2023;11(11):1642. doi:10.3390/vaccines11111642

114. Ibid.

115. Ibid.

116. Loebel M, Grabowski P, Heidecke H, et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun. 2016;52:32-39. doi:10.1016/j.bbi.2015.09.013.

117. Pena C, Moustafa A, Mohamed AR, Grubb B. Autoimmunity in Syndromes of Orthostatic Intolerance: An Updated review. Journal of Personalized Medicine. 2024;14(4):435. doi:10.3390/jpm14040435.

118. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): Similarities and differences. Pathology - Research and Practice. 2023;246:154497. doi:10.1016/j.prp.2023.154497.

119. Patterson BK, Francisco EB, Yogendra R, et al. SARS-CoV-2 S1 Protein Persistence in SARS-CoV-2 Negative Post-Vaccination Individuals with Long COVID/ PASC-Like Symptoms. Research Square (Research Square). Published online July 12, 2022. doi:10.21203/rs.3.rs-1844677/v1.

120. Bhattacharjee B, Lu P, Monteiro VS, et al. Immunological and antigenic signatures associated with chronic illnesses after COVID-19 vaccination. medRxiv. Preprint posted online February 18, 2025. doi:10.1101/2025.02.18.25322379.

121. Salehi Z, Ghoochani BFNM, Nourian YH, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. Allergy Asthma and Clinical Immunology. 2023;19(1). doi:10.1186/s13223-023-00797-0.

122. . Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectronic Medicine. 2023;9(1). doi:10.1186/s42234-023-00104-7.

123. Sapolsky RM. Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-Related Diseases, and Coping. 3rd ed. Henry Holt and Company; 2004.

124. Ibid.

125. Cacioppo JT, Uchino BN, Berntson GG. Individual differences in the autonomic origins of heart rate reactivity: the psychometrics of respiratory sinus arrhythmia and preejection period. Psychophysiology. 1994;31(4):412-419. doi:10.1111/j.1469-8986.1994.tb02449.x.

126. Kemp AH, Quintana DS. The relationship between mental and physical health: Insights from the study of heart rate variability. International Journal of Psychophysiology. 2013;89(3):288-296. doi:10.1016/j.ijpsycho.2013.06.018.

127. Allen MT, Crowell MD. Patterns of autonomic response during laboratory stressors. Psychophysiology. 1989;26(5):603-614. doi:10.1111/j.1469-8986.1989.tb00718.x.

128. Kemp AH, Quintana DS. The relationship between mental and physical health: insights from the study of heart rate variability. Int J Psychophysiol. 2013;89(3):288-296. doi:10.1016/j.ijpsycho.2013.06.018.

129. Almeida DM. Resilience and vulnerability to daily stressors assessed via diary methods. Current Directions in Psychological Science. 2005;14(2):64-68. doi:10.1111/j.0963-7214.2005.00336.x.

130. Serido J, Almeida DM, Wethington E. Chronic Stressors and Daily Hassles: Unique and Interactive Relationships with Psychological Distress. Journal of Health and Social Behavior. 2004;45(1):17-33. doi:10.1177/002214650404500102.

131. Bermejo-Martins E, Luis EO, Sarrionandia A, et al. Different Responses to Stress, Health Practices, and Self-Care during COVID-19 Lockdown: A Stratified Analysis. International Journal of Environmental Research and Public Health. 2021;18(5):2253. doi:10.3390/ijerph18052253.

132. Lee EK, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015;48(4):209-216.

133. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31(9):464-468.

134. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24-31.

135. Mastorakos G, Weber JS, Magiakou MA, Hann G, Chrousos GP. Hypothalamic-pituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion. J Clin Endocrinol Metab. 1994;79(4):934-939.

136. Ibid.

137. Paskitti ME, McCreary BJ, Herman JP. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Mol Brain Res. 2000;80(2):142-152.

138. Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160(9):1554-1565. doi:10.1176/appi.ajp.160.9.1554.

139. Kok BE, Coffey KA, Cohn MA, et al. How positive emotions build physical health. Psychological Science. 2013;24(7):1123-1132. doi:10.1177/0956797612470827.

140. Ibid.

141. Field T. Tai Chi research review. Complement Ther Clin Pract. 2011;17(3):141-146. doi:10.1016/j.ctcp.2010.10.002.

142. So WWY, Cai S, Yau SY, Tsang HWH. The neurophysiological and psychological mechanisms of Qigong as a treatment for depression: a systematic review and meta-analysis. Front Psychiatry. 2019; 10:820. doi:10.3389/fpsyt.2019.00820.

143. Gitler A, Vanacker L, De Couck M, De Leeuw I, Gidron Y. Neuromodulation applied to diseases: the case of HRV biofeedback. Journal of Clinical Medicine. 2022;11(19):5927. doi:10.3390/jcm11195927.

144. Ibid.

145. Mol MBA, Strous MTA, Van Osch FHM, et al. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS ONE. 2021;16(10):e0258841. doi:10.1371/journal.pone.0258841.

146. Yau KK, Loke AY. Effects of forest bathing on pre-hypertensive and hypertensive adults: a review of the literature. Environ Health Prev Med. 2020;25(1):23. doi:10.1186/s12199-020-00856-7.

147. Fornaro R, Actis GC, Caviglia GP, Pitoni D, Ribaldone DG. Inflammatory bowel disease: role of vagus nerve stimulation. Journal of Clinical Medicine. 2022;11(19):5690. doi:10.3390/jcm11195690.

148. Courties A, Berenbaum F, Sellam J. Vagus nerve stimulation in musculoskeletal diseases. Joint Bone Spine. 2021;88(3):105149. doi:10.1016/j.jbspin.2021.105149.

149. Ibid.

150. Seitz T, Szeles JC, Kitzberger R, et al. Percutaneous auricular vagus nerve stimulation reduces inflammation in critical COVID-19 patients. Frontiers in Physiology. 2022;13. doi:10.3389/fphys.2022.897257.

151. Staats P, Giannakopoulos G, Blake J, Liebler E, Levy RM. The use of non-invasive vagus nerve stimulation to treat respiratory symptoms associated with COVID-19: A theoretical hypothesis and early clinical experience. Neuromodulation Technology at the Neural Interface. 2020;23(6):784-788. doi:10.1111/ner.13172.

152. 149Rangon CM, Barruet R, Mazouni A, et al. Auricular neuromodulation for mass vagus nerve stimulation: Insights from SOS COVID-19 a multicentric, randomized, controlled, Double-Blind French pilot study. Frontiers in Physiology. 2021;12. doi:10.3389/fphys.2021.704599.

153. Viti A, Panconi G, Guarducci S, et al. Modulation of Heart Rate Variability following PAP Ion Magnetic Induction Intervention in Subjects with Chronic Musculoskeletal Pain: A Pilot Randomized Controlled Study. International Journal of Environmental Research and Public Health. 2023;20(5):3934. doi:10.3390/ijerph20053934.

154. Jerman I, Škafar M, Pihir J, Senica M. Evaluating PEMF vagus nerve stimulation through neck application: A randomized placebo study with volunteers. Electromagnetic Biology and Medicine. Published online February 19, 2025:1-14. doi:10.1080/15368378.2025.2462649.

155. Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature. 2021;598(7882):641-645. doi:10.1038/s41586-021-04001-4.

156. Islam MT, Mubarak MS. Pyrrolidine alkaloids and their promises in pharmacotherapy. Advances in Traditional Medicine. 2020;20(1):13-22. doi:10.1007/s13596-019-00419-4.

157. Domino EF, Hornbach E, Demana T. The nicotine content of common vegetables. New England Journal of Medicine. 1993;329(6):437. doi:10.1056/nejm199308053290619.

158. Rakhecha B, Agnihotri P, Dakal TC, Saquib M, Monu N, Biswas S. Anti-inflammatory activity of nicotine isolated from Brassica oleracea in rheumatoid arthritis. Bioscience Reports. 2022;42(4). doi:10.1042/bsr20211392.

159. Nielsen SS, Franklin GM, Longstreth WT, Swanson PD, Checkoway H. Nicotine from edible Solanaceae and risk of Parkinson disease. Annals of Neurology. 2013;74(3):472-477. doi:10.1002/ana.23884.

160. Lanier RK, Gibson KD, Cohen AE, Varga M. Effects of Dietary Supplementation with the Solanaceae Plant Alkaloid Anatabine on Joint Pain and Stiffness: Results from an Internet-Based Survey Study. Clinical Medicine Insights Arthritis and Musculoskeletal Disorders. 2013; 6:CMAMD. S13001. doi:10.4137/cmamd.s13001.

161. Siavashani AZ, Mohammadi J, Maniura-Weber K, et al. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomaterials Science. 2019;8(1):148-162. doi:10.1039/c9bm00814d.

162. Penberthy WT. Nicotinic Acid‐Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis. PPAR Research. 2009;2009(1). doi:10.1155/2009/853707.

163. Shoaib S, Ansari MA, Fatease AA, et al. Plant-derived bioactive compounds in the management of neurodegenerative disorders: challenges, future directions and molecular mechanisms involved in neuroprotection. Pharmaceutics. 2023;15(3):749. doi:10.3390/pharmaceutics15030749.

164. Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in rat brain neurons. Eur J Neurosci. 1997;9(12):2734-2742.

165. Jonnala RR, Graham JH 3rd, Terry AV Jr, Beach JW, Young JA, Buccafusco JJ. Relative levels of cytoprotection produced by analogs of choline and the role of alpha7-nicotinic acetylcholine receptors. Synapse. 2003;47(4):262-269.

166. Poly C, Massaro JM, Seshadri S, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr. 2011; 94(6):1584-1591. doi:10.3945/ajcn.110.008938.

167. Grau V, Richter K, Hone AJ, McIntosh JM. Conopeptides [V11L;V16D]ArIB and RgIA4: powerful tools for the identification of novel nicotinic acetylcholine receptors in monocytes. Front Pharmacol. 2019;9:1499. doi:10.3389/fphar.2018.01499.

168. Latifi S, Tamayol A, Habibey R, et al. Natural lecithin promotes neural network complexity and activity. Scientific Reports. 2016;6(1). doi:10.1038/srep25777.

169. Shi F, Zhou J, Meng D. Curative effect of soybean lecithin on cerebral infarction. Zhonghua Yi Xue Za Zhi. 2001;81:1301-1303.

170. Patrick RP. Role of phosphatidylcholine‐DHA in preventing APOE4‐associated Alzheimer’s disease. The FASEB Journal. 2018;33(2):1554-1564. doi:10.1096/fj.201801412r.

171. Hotz JF, Kellerberger S, Jöchlinger SE, et al. Exploring cognitive impairments and the efficacy of phosphatidylcholine and computer-assisted cognitive training in post-acute COVID-19 and post-acute COVID-19 vaccination syndrome. Front Neurol. 2024;15:1419134.

172. Amenta F, Parnetti L, Gallai V, Wallin A. Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mechanisms of Ageing and Development. 2001;122(16):2025-2040. doi:10.1016/s0047-6374(01)00310-4.

173. De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clinical Therapeutics. 2003;25(1):178-193. doi:10.1016/s0149-2918(03)90023-3.

174. Di Perri R, Coppola G, Ambrosio LA, Grasso A, Puca FM, Rizzo M. A Multicentre Trial to Evaluate the Efficacy and Tolerability of α-Glycerylphosphorylcholine versus Cytosine Diphosphocholine in Patients with Vascular Dementia. Journal of International Medical Research. 1991;19(4):330-341. doi:10.1177/030006059101900406.

175. Parnetti L, Amenta F, Gallai V. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysis of published clinical data. Mechanisms of Ageing and Development. 2001;122(16):2041-2055. doi:10.1016/s0047-6374(01)00312-8.

176. Putignano S, Gareri P, Castagna A, et al. Retrospective and observational study to assess the efficacy of citicoline in elderly patients suffering from stupor related to complex geriatric syndrome. Clin Interv Aging. 2012;7:113-118. doi:10.2147/CIA.S29366. Erratum in: Clin Interv Aging. 2012;7:349.

177. Zhang X, Wu M, Lu F, Luo N, He ZP, Yang H. Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol. 2014;49(1):66-77. doi:10.1007/s12035-013-8491-x.

178. Duan X, Li Y, Xu F, Ding H. Study on the neuroprotective effects of Genistein on Alzheimer’s disease. Brain and Behavior. 2021;11(5). doi:10.1002/brb3.2100.

179. Das UN. Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Ann Hepatol. 2012; 11(3):409-411.

180. Singh R, Sadiq NM. Cholinesterase inhibitors. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2025 Jan–. Updated July 17, 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544336/

181. Joseph P, Pari R, Miller S, et al. Neurovascular dysregulation and acute exercise intolerance in myalgic encephalomyelitis/chronic fatigue syndrome: a randomized, placebo-controlled trial of pyridostigmine. Chest. 2022;162(5):1116-1126. doi:10.1016/j.chest.2022.04.146.

182. Joseph P, Singh I, Oliveira R, et al. Exercise pathophysiology in myalgic encephalomyelitis/ chronic fatigue syndrome and postacute sequelae of SARS-CoV-2: more in common than not? Chest. 2023;164(3):717-726. doi:10.1016/j.chest.2023.03.049.

183. Pandareesh MD, Anand T. Neuromodulatory Propensity of Bacopa monniera Against Scopolamine-Induced Cytotoxicity in PC12 Cells Via Down-Regulation of AChE and Up-Regulation of BDNF and Muscarnic-1 Receptor Expression. Cellular and Molecular Neurobiology. 2013; 33(7):875-884. doi:10.1007/s10571-013-9952-5.

184. Wang R, Yan H, Tang XC (January 2006). "Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine". Acta Pharmacologica Sinica. 27 (1): 1–26. doi:10.1111/j.1745-7254.2006.00255.x.

185. Pitchai A, Rajaretinam RK, Mani R, Nagarajan N. Molecular interaction of human acetylcholinesterase with trans-tephrostachin and derivatives for Alzheimer’s disease. Heliyon. 2020;6(9):e04930. doi:10.1016/j.heliyon.2020.e04930.

186. Sutalangka C, Wattanathorn J. Neuroprotective and cognitive-enhancing effects of the combined extract of Cyperus rotundus and Zingiber officinale. BMC Complement Altern Med. 2017;17(1):135. doi:10.1186/s12906-017-1632-4.

187. Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in an animal model of age-related dementia. Oxid Med Cell Longev. 2013;2013:695936. doi:10.1155/2013/695936.

188. Karlsson E, Eaker DL, Porath J. Purification of a neurotoxin from the venom of Naja nigricollis. Biochimica Et Biophysica Acta (BBA) - General Subjects. 1966;127(2):505-520. doi:10.1016/0304-4165(66)90404-1.

189. de Torre MP, Cavero RY, Calvo MI. Anticholinesterase activity of selected medicinal plants from Navarra region of Spain and a detailed phytochemical investigation of Origanum vulgare L. ssp. vulgare. Molecules. 2022;27:7100.

190. Orhan IE, Kucukboyaci N, Calis I, Cerón-Carrasco HP, den Haan Alonso H, Peña-García J, Pérez-Sánchez H. Acetylcholinesterase inhibitory assessment of isolated constituents from Salsola grandis Freitag, Vural & Adıgüzel and molecular modeling studies on N-acetyltryptophan. Phytochem Lett. 2017;20:373-378.

191. De Torre MP, Cavero RY, Calvo MI. Anticholinesterase Activity of Selected Medicinal Plants from Navarra Region of Spain and a Detailed Phytochemical Investigation of Origanum vulgare L. ssp. vulgare. Molecules. 2022;27(20): 7100. doi:10.3390/molecules27207100.

192. Shoaib S, Ansari MA, Fatease AA, et al. Plant-Derived bioactive Compounds in the management of neurodegenerative Disorders: challenges, future directions and molecular mechanisms involved in neuroprotection. Pharmaceutics. 2023;15(3):749. doi:10.3390/pharmaceutics15030749.

193. Alharbi MA, Alrehaili AA, Albureikan MOI, et al. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv. 2023;13(38): 26406-26417. doi:10.1039/d3ra04009g