Sensory-Motor Modulation in the Masticatory Apparatus and in Temporomandibular Disorders: from Basic Science to Clinical Practice

Main Article Content

Nicolas Fougeront, DDS

Abstract

The jaw sensory-motor system is involved in a wide range of functions: respiration, deglutition, mastication/sucking, verbal/non-verbal expression and protective mechanisms (coughing, prevention from aspiration, …). Some of these tasks may be altered/impaired in temporomandibular disorders that may even impair feeding behaviour. It is suggested that motor maladaptation is due to poor sensory-motor control. Indeed, the excitability of trigeminal reflexes may be modified both in experimental and in clinical painful conditions. However, this research field is a conflicting area. Thus, the aim of this narrative review is first to address the trigeminal sensory-motor control in a healthy state in mastication with a special focus on the type of control either feedback or feedforward that are not mutually exclusive but cooperate. Secondly, it is considered whether there is chronic pain-related modulation of trigeminal sensory-motor control in temporomandibular disorders. Some additional data concerning the spinal system in other musculoskeletal disorders are considered. Mostly, proprioceptive feedback control, i.e. stretch reflex and feedforward control are depressed in musculoskeletal disorders. Protective or withdrawal reflex threshold may be decreased. It would favour protective behaviour. This knowledge could be of clinical interest in functional rehabilitation of musculoskeletal disorders such as temporomandibular disorders. It is suggested that a highly regular rhythm of movement repetitions would improve efficiency of feedback and feedforward control and finally muscle co-ordination. A better knowledge of sensory-motor regulation could also help to understand what is referred clinically to “(mal)adaptation” in oral rehabilitation procedures involving some changes in dental occlusion.

Keywords: temporomandibular joint disorder, musculoskeletal pain, facial pain, chronic pain, motor activity, mastication, deglutition, reflex, feedback control, feedforward control, rehabilitation, dental occlusion

Article Details

How to Cite
FOUGERONT, Nicolas. Sensory-Motor Modulation in the Masticatory Apparatus and in Temporomandibular Disorders: from Basic Science to Clinical Practice. Medical Research Archives, [S.l.], v. 13, n. 5, may 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6561>. Date accessed: 21 june 2025. doi: https://doi.org/10.18103/mra.v13i5.6561.
Section
Review Articles

References

1. Berthoz A, Graf W, Vidal PP. The head and neck motor system. New York: Oxford University Press; 1992.
2. Keshner EA, Peterson BW. Motor control strategies underlying head stabilization and voluntary head movements in humans and cats. Prog Brain Res. 1988;76:329-339. doi: 10.1016/s0079-6123(08)64520-3.
3. Miller AJ. Craniomandibular muscles: their role in function and form. Boca Raton: CRC Press; 1991. pp. 71-78 and 111-130.
4. Woda A, Pionchon P, Palla S. Regulation of mandibular postures: mechanisms and clinical implications. Crit Rev Oral Biol Med. 2001;12(2):166-178. doi: 10.1177/10454411010120020601.
5. Shikata N, Ueda HM, Kato M, Tabe H, Nagaoka K, Nakashima Y, et al. Association between nasal respiratory obstruction and vertical mandibular position. J Oral Rehabil. 2004;31(10):957-962. doi: 10.1111/j.1365-2842.2004.01378.x.
6. Dubner R, Sessle BJ, Storey AT. The neural basis of oral and facial function. New York: Plenum Press; 1978. pp. 211-376.
7. Fontenelle A, Woda A. Physiologie de l’appareil manducateur. In Chateau M (ed.). Orthopédie dento-faciale. Tome 1. Paris: Édition CdP; 1993. pp. 167-229.
8. Miles TS, Nauntofte B, Svensson P (eds.). Clinical oral physiology. Copenhagen: Quintessence publishing co ltd; 2004.
9. Van der Bilt. Assessment of mastication with implications for oral rehabilitation: a review. J Oral Rehabil. 2011;38(10):754-770. doi: 10.1111/j.1365-2842.2010.02197.x.
10. Sessle BJ. Avivi-Arber L, Murray GM. Motor control of masticatory muscles. In McLoon LK, Andrade F (eds). Craniofacial muscles. A new framework to understand the effector side of craniofacial muscle control. New York, NY 2013, Springer-Verlag pp. 111-130 https://doi.org/10.1007/978-1-4614-4466-4_7. Accessed October 28, 2016
11. Avivi-Arber L, Sessle BJ. Jaw sensorimotor control in healthy adults and effects of ageing. J Oral Rehabil. 2018;45(1):50-80. doi: 10.1111/joor.12554.
12. Falardeau D, Dubois S, Kolta A. The coordination of chewing. Curr Opin Neurobiol. 2023;83:102805. doi: 10.1016/j.conb.2023.102805.
13. Barlow SM, JP Lund, Estep M, Kolta A. Central pattern generators for orofacial movements and speech. In Brudzynski SM (ed.), Handbook of mammalian vocalization. Oxford: Academic Press, Elsevier; 2009. pp. 351- 370.
14. Martin-Harris, B. Coordination of respiration and swallowing. 2006. GI Motility Online. doi:10.1038/gimo10. Retrieved from http://www.nature.com/gimo/contents/pt1/full/gimo10.html. Accessed April 10, 2020
15. Matsuo K, Palmer JB. Coordination of mastication, swallowing and breathing. Jpn Dent Sci Rev. 2009;45(1):31-40. doi: 10.1016/j.jdsr.2009.03.004.
16. Eriksson PO, Häggman-Henrikson B, Nordh E, Zafar H. Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. J Dent Res. 2000;79(6):1378-1384. doi: 10.1177/00220345000790060501.
17. Hellmann D, Giannakopoulos NN, Schmitter M, Lenz J, Schindler HJ. Anterior and posterior neck muscle activation during a variety of biting tasks. Eur J Oral Sci. 2012;120(4):326-334. doi: 10.1111/j.1600-0722.2012.00969.x.
18. Ishii T, Narita N, Endo H. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects. Physiol Behav. 2016;160:35-42. doi: 10.1016/j.physbeh.2016.03.023.
19. Giannakopoulos NN, Schindler HJ, Rammelsberg P, Eberhard L, Schmitter M, Hellmann D. Co-activation of jaw and neck muscles during submaximum clenching in the supine position. Arch Oral Biol. 2013;58(12):1751-1760. doi: 10.1016/j.archoralbio.2013.09.002.
20. Giannakopoulos NN, Hellmann D, Hellmann D, Schmitter M, Krüger B, Hauser T, Schindler HJ. Neuromuscular interaction of jaw and neck muscles during jaw clenching. J Orofac Pain. 2013;27(1):61-71. doi: 10.11607/jop.915.
21. Giannakopoulos NN, Schindler HJ, Hellmann D. Co-contraction behaviour of masticatory and neck muscles during tooth grinding. J Oral Rehabil. 2018;45(7):504-511. doi: 10.1111/joor.12646.
22. Gouw S, Frowein A, Braem C, de Wijer A, Creugers NHJ, Pasman JW, Doorduin J, Kalaykova SI. Coherence of jaw and neck muscle activity during sleep bruxism. J Oral Rehabil. 2020;47(4):432–440. doi: 10.1111/joor.12932.
23. Armijo-Olivo S, Silvestre R, Fuentes J, da Costa BR, Gadotti IC, Warren S, Major PW, Thie NM, Magee DJ. Electromyographic activity of the cervical flexor muscles in patients with temporomandibular disorders while performing the craniocervical flexion test: a cross-sectional study. Phys Ther. 2011;91(8):1184-1197. doi: 10.2522/ptj.20100233.
24. Testa M, Geri T, Gizzi L, Petzke F, Falla D. Alterations in masticatory muscle activation in people with persistent neck pain despite the absence of orofacial pain or temporomandibular disorders. J Oral Facial Pain Headache. 2015;29(4):340-348. doi: 10.11607/ofph.1432.
25. Eriksson PO, Häggman-Henrikson B, Zafar H. Jaw-neck dysfunction in whiplash-associated disorders. Arch Oral Biol. 2007;52(4):404-408. doi:10.1016/j.archoralbio.2006.12.016.
26. Eklund A, Wiesinger B, Lampa E, Österlund C, Wänman A, Häggman-Henrikson B. Jaw-neck motor function in the acute stage after whiplash trauma. J Oral Rehabil. 2020;47(7):834-842. doi: 10.1111/joor.12981.
27. Weber P, Corrêa EC, Bolzan Gde P, Ferreira Fdos S, Soares JC, Silva AM. Chewing and swallowing in young women with temporomandibular disorder. Codas. 2013;25(4):375-380. doi: 10.1590/s2317-17822013005000005.
28. Mapelli A, Zanandréa Machado BC, Giglio LD, Sforza C, De Felício CM. Reorganization of muscle activity in patients with chronic temporomandibular disorders. Arch Oral Biol. 2016;72:164-171. doi: 10.1016/j.archoralbio.2016.08.022.
29. Al Sayegh S, Christidis N, Kumar A, Svensson P and Grigoriadis A. Masticatory performance in patients with jaw muscle pain: A case control study. Front Dent Med. 2022;3:963425. doi: 10.3389/fdmed.2022.963425. Accessed April 20, 2024.
30. Gilheaney Ó, Stassen LF, Walshe M. Prevalence, nature, and management of oral stage dysphagia in adults with temporomandibular joint disorders: findings from an Irish oohort. J Oral Maxillofac Surg. 2018;76(8):1665-1676. doi: 10.1016/j.joms.2018.01.036.
31. Fougeront N, Fleiter B. Temporomandibular disorders and co-morbid neck pain: facts and hypotheses regarding pain-induced and rehabilitation-induced motor activity changes. Can J Physiol Pharmacol. 2018;96(11):1051-1059. doi: 10.1139/cjpp-2018-0100.
32. Marim GC, Machado BCZ, Trawitzki LVV, de Felício CM. Tongue strength, masticatory and swallowing dysfunction in patients with chronic temporomandibular disorder. Physiol Behav. 2019;15;210:112616. doi: 10.1016/j.physbeh.2019.112616.
33. Fassicollo CE, Machado BCZ, Garcia DM, de Felício CM. Swallowing changes related to chronic temporomandibular disorders. Clin Oral Investig. 2019;23(8):3287-3296. doi: 10.1007/s00784-018-2760-z.
34. Raphael KG, Marbach JJ. Dietary fiber intake in patients with myofascial face pain. J Orofac Pain. 2002;16:39-47. PMID: 11889658.
35. Safour W, Howey R. A phenomenologic study about dietary habits and digestive complications for people living with temporomandibular joint disorder. J Oral Facial Pain Headache. 2019;3(4):377–388. doi: 10.11607/ofph.2302.
36. Svensson P, Arendt-Nielsen L. Induction and assessment of experimental muscle pain. J Electromyogr Kinesiol. 1995;5(3):131-140. doi: 10.1016/1050-6411(95)00019-v.
37. De Laat A, Svensson P, Macaluso G. Are jaw and facial reflexes modulated during clinical or experimental orofacial pain? J Orofac Pain. 1998;12(4):260-271. PMID: 10425972.
38. Svensson P. Masseter reflexes modulated by pain. Mov Disord. 2002;17 Suppl 2:S45-48. doi: 10.1002/mds.10058.
39. Svensson P. What can human experimental pain models teach us about clinical TMD? Arch Oral Biol. 2007;52(4):391-394. doi: 10.1016/j.archoralbio.2006.11.015.
40. Türker KS, Miles TS. Inhibitory reflexes in human masseter muscle. In van Steenbergh D and De Laat A (eds.). Electromyography of jaw reflexes in man (proceedings of the IADR). Leuven: Leuven University Press; 1989. pp. 237-256.
41. Ainine S, Mason AG, Cadden SW. Quantification of jaw reflexes evoked by natural tooth contact in human subjects. Arch Oral Biol. 2011;56(9):855-863. doi: 10.1016/j.archoralbio.2011.02.012.
42. Lund JP, Lamarre Y, Lavigne G, Duquet G. Human jaw reflexes. Adv Neurol. 1983;39:739-755. PMID: 6660120.
43. De Laat A. Reflexes elicitable in jaw muscles and their role during jaw function and dysfunction: a review of the literature. Part III. Reflexes in human jaw muscles during function and dysfunction of the masticatory system. Cranio. 1987;5(4):333-343. doi: 10.1080/08869634.1987.11678208.
44. Türker KS. Reflex control of human jaw muscles. Crit Rev Oral Biol Med. 2002;13(1):85-104. doi: 10.1177/154411130201300109.
45. Lund JP, Kolta A, Westberg KG, Scott G. Brainstem mechanisms underlying feeding behaviors. Curr Opin Neurobiol. 1998;8(6):718-724. doi: 10.1016/s0959-4388(98)80113-x.
46. Morquette P, Lavoie R, Fhima MD, Lamoureux D, Verdier L, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol. 2012;96(3):340-355. doi: 10.1016/j.pneurobio.2012.01.011.
47. Lund JP, Richmond FJ, Touloumis C, Patry Y, Lamarre Y. The distribution of Golgi tendon organs and muscle spindles in masseter and temporalis muscles of the cat. Neuroscience. 1978;3(2):259-270. doi: 10.1016/0306-4522(78)90107-0.
48. Dessem D. Sensorimotor responses evoked by tooth displacement. In Morimoto T, Matsuya T, and Takada K (ed.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 39-47.
49. Capra NF, Dessem D. Central connections of trigeminal primary afferent neurons: topographical and functional considerations. Crit Rev Oral Biol Med. 1992;4(1):1-52. doi: 10.1177/10454411920040010101.
50. Ghez C. The control of movement. In Kandel ER, Schwartz JH, Jessell TM (eds.). Principles of neural science. New York: Elsevier; 1991, 3rd ed. pp. 533-625.
51. Grigoriadis A, Johansson RS, Trulsson M. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles. J Oral Rehabil. 2014;41(5):367-373. doi: 10.1111/joor.12155.
52. Yamada Y, Yamamura K, Inoue M. Coordination of cranial motoneurons during mastication. Respir Physiol Neurobiol. 2005;147(2-3):177-189. doi: 10.1016/j.resp.2005.02.017.
53. Nakamura Y, Katakura N, Nakajima M. Generation of rhythmical ingestive activities of the trigeminal, facial and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. J Med Dent Sci. 1999;46(2):63-73. PMID: 10805320.
54. Yasui Y. Descending pathways of the basal ganglia to the orofacial premotor neurons. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 77-85.
55. Arce-McShane FI, Sessle BJ, Ram Y, Ross CF, Hatsopoulos NG. Multiple regions of sensorimotor cortex encode bite force and gape. Front Syst Neurosci. 2023 Sep 22;17:1213279. doi: 10.3389/fnsys.2023.1213279.
56. Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000 Dec 15;886(1-2):113-164. doi: 10.1016/s0006-8993(00)02905-x.
57. Swanson LW. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol. 2005;493(1):122-131. doi: 10.1002/cne.20733.
58. Peyron MA, Maskawi K, Woda A, Tanguay R, Lund JP. Effects of food texture and sample thickness on mandibular movement and hardness assessment during biting in man. J Dent Res. 1997;76(3):789-795. doi: 10.1177/00220345970760031201.
59. Woda A, Foster K, Mishellany A, Peyron MA. Adaptation of healthy mastication to factors pertaining to the individual or to the food. Physiol Behav. 2006;89(1):28-35. doi: 10.1016/j.physbeh.2006.02.013.
60. Bourdiol P, Hennequin M, Peyron MA, Woda A. Masticatory adaptation to occlusal changes. Front Physiol, 03 April 2020 Sec. Craniofacial Biology and Dental Research Volume 11 – 2020. https://doi.org/10.3389/fphys.2020.00263. Accessed April 20, 2024
61. Lund JP. Mastication and its control by the brain stem. Crit Rev Oral Biol Med. 1991;2(1):33-64. doi: 10.1177/10454411910020010401.
62. Yamamura C, Kosugi S, Ono K, Shimada K. Patterns of jaw reflexes induced by incisal and molar pressure stimulation in relation to background levels of jaw-clenching force in humans. Jpn J Physiol. 1993;43(1):87-102. doi: 10.2170/jjphysiol.43.87.
63. Taguchi Y, Yamamura C, Shimada K, Seki Y, Igarashi M, Nouchi A. Control of  and  motoneuron units in periodontal jaw reflexes. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 29-38.
64. Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11(1):57-91. doi: 10.1177/10454411000110010401.
65. Noguchi M, Kurose M, Yamamura K, et al. Unilateral application of an inflammatory irritant to the rat temporomandibular joint region produces bilateral modulation of the jaw-opening reflex. Brain Res Bull. 2005 Oct 15;67(3):182-188. doi: 10.1016/j.brainresbull.2005.06.013.
66. Kurose M, Yamamura K, Noguchi M, Inoue M, Ootaki S, Yamada Y. Modulation of jaw reflexes induced by noxious stimulation to the muscle in anesthetized rats. Brain Res. 2005 Apr 11;1041(1):72-86. doi: 10.1016/j.brainres.2005.02.003.
67. Lund JP, Donga R., Widmer CG, Stohler CS. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol. 1991;69(5):683-694. doi: 10.1139/y91-102.
68. Murray GM, Lavigne GJ. Orofacial pain, motor function and sleep. In Orofacial Pain. Recent advances in assessment, management, and understanding mechanisms. Sessle BJ (ed.). Washington: IASP Press; 2014. pp. 75-97.
69. Westberg -K, Clavelou P, Schwartz G, Lund PJ. Effects of chemical stimulation of masseter muscle nociceptors on trigeminal motoneuron and interneuron activities during fictive mastication in the rabbit. Pain. 1997;73(3):295-308. doi: 10.1016/S0304-3959(97)00103-6.
70. Kimura S, Kontani H. Separate recording of A-delta and C fiber-mediated nociceptive flexor reflex responses of mouse hindlimb using electromyography and the characteristics of wind-up appearing in the responses. J Pharmacol Sci. 2008 Oct;108(2):172-178. doi: 10.1254/jphs.08104fp.
71. Wall PD, Coderre TJ, Stern Y, Wiesenfeld-Hallin Z. Slow changes in the flexion reflex of the rat following arthritis or tenotomy. Brain Res. 1988;447(2):215-222. doi: 10.1016/0006-8993(88)91122-5.
72. Slager GEC, Otten E, van Willigen JD, Broekhuijsen ML. Contribution of mechanical properties of the jaw muscles to control unexpected jaw-closing movements. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 369-373.
73. Türker KS, Sowman PF, Tuncer M, Tucker KJ, Brinkworth RSA. The role of periodontal mechanoreceptors in mastication. Arch Oral Biol. 2007;52(4):361-364. doi: 10.1016/j.archoralbio.2006.11.014.
74. Yoshida K, Inoue H. Unloading reflex of masticatory muscles during comminution of food. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 357-363.
75. Kobayashi S, Enomoto S, Nakamura Y, Nagao M. Short latency of masseter muscles to loading and unloading in complete denture wearers. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 353-356.
76. Munakata Y. Reflexes in the jaw and neck muscles induced by sudden unloading of jaw elevator muscles in man. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 365-373.
77. Lund JP. Specialization of reflexes of the jaws. In Taylor A (ed.). Neurophysiology of the jaws and teeth. London: Macmillan Press; 1990. pp. 142-161.
78. Kang Y, Saito. M, Toyoda H, Sato H. Recruitment of masseter motoneurons by presumed spinal Ia input. In Gossard JP, Dubuc R, Kolta A (eds.). Breathe, walk and chew. Prog Brain Res. Amsterdam: Elsevier 2010;187:163-171. doi: 10.1016/B978-0-444-53613-6.00011-3.
79. Komuro A, Morimoto T, Iwata K, et al. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 2001;86(6):2834-2844. doi: 10.1152/jn.2001.86.6.2834.
80. Elias SA. Trigeminal projections to the cerebellum. In Taylor A (ed.). Neurophysiology of the jaws and teeth. London: Macmillan Press; 1990. pp. 192-236.
81. Taylor A, Durbaba R. Electrophysiology of the trigeminal projection to the cerebellum in the cat. In Morimoto T, Matsuya T, and Takada K (eds.). Brain and oral functions. Oral motor function and dysfunction. Amsterdam, Netherlands: Elsevier Science; 1995. pp. 429-433.
82. Piancino MG, Isola G, Cannavale R, et al. From periodontal mechanoreceptors to chewing motor control: a systematic review. Arch Oral Biol. 2017;78:109-121. doi: 10.1016/j.archoralbio.2017.02.010.
83. Hellmann D, Glöggler JC, Plaschke K, et al. Effects of preventing intercuspation on the precision of jaw movements. J Oral Rehabil. 2021;48(4):392-402. doi: 10.1111/joor.13137.
84. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006 Dec;16(6):645-649. doi: 10.1016/j.conb.2006.08.016.
85. Zhang W, Kobayashi M, Moritani M, et al. An involvement of trigeminal mesencephalic neurons in regulation of occlusal vertical dimension in the guinea pig. J Dent Res. 2003;82(7):565-569. doi: 10.1177/154405910308200715.
86. Van der Linden FPGM. Facial growth and facial orthopedics. Kingston-upon-Thames, Surray, UK: Quintessence; 1986. pp. 17-39 and 89-103.
87. Bishara SE, Jakobsen JR. Longitudinal changes in three normal facial types. Am J Orthod. 1985;88(6):466-502. doi: 10.1016/s0002-9416(85)80046-4.
88. Thilander B, Persson M, Adolfsson U. Roentgen–cephalometric standards for a Swedish population. A longitudinal study between the ages of 5 and 31 years. Eur J Orthod. .2005;27(4):370-389. doi: 10.1093/ejo/cji033.
89. Naser-Ud-Din S, Sowman PF, Sampson WJ, Dreyer CW, Türker KS. Masseter length determines muscle spindle reflex excitability during jaw-closing movements. Am J Orthod Dentofacial Orthop. 2011;139(4):e305-313. doi: 10.1016/j.ajodo.2009.12.033.
90. Zhang J, Luo P, Ro JY, Xiong H. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study. Brain Res. 2012;1489:37-47. doi: 10.1016/j.brainres.2012.10.021.
91. Lazarov NE. Neurobiology of orofacial proprioception. Brain Res Rev. 2007;56(2):362-383. doi: 10.1016/j.brainresrev.2007.08.009.
92. Carlson DS. Theories of craniofacial growth in postgenomic era. Semin Orthod. 2005;11(4):172-183. doi: 10.1053/j.sodo.2005.07.002.
93. Graf H. Bruxism. Dent Clin North Am. 1969;13(3):659-665. PMID: 5256151.
94. Kumar A, Kothari M, Grigoriadis A, Trulsson M, Svensson P. Bite or brain: implication of sensorimotor regulation and neuroplasticity in oral rehabilitation procedures. J Oral Rehabil. 2018;45(4):323-333. doi: 10.1111/joor.12603.
95. Goodacre CJ, Roberts WE, Goldstein G, Wiens JP. Does the stomatognathic system adapt to changes in occlusion? Best evidence consensus statement. J Prosthodont. 2020 Dec 17. doi: 10.1111/jopr.13310.
96. Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci. 2000;4(11):423-431. doi: 10.1016/s1364-6613(00)01537-0.
97. Shiau YY, Ash MM Jr. Immediate and delayed effect of working interferences on EMG and jaw movement. In van Steenbergh D and De Laat A (eds.). Electromyography of jaw reflexes in man (proceedings of the IADR). Leuven: Leuven University Press; 1989. pp. 311-326.
98. Mori F, Nakajima K, Tachibana A, et al. Reactive and anticipatory control of posture and bipedal locomotion in nonhuman primate. In Mori S, Stuart DG, Wiesendanger M (eds.). Brain mechanisms for the integration of posture and movements. Prog Brain Res. 2004;143:191-198. doi: 10.1016/S0079-6123(03)43019-7.
99. Kuo AD. The relative roles of feedforward and feedback in the control of rhythmic movements. Motor control. 2002;6(2):129-145. doi: 10.1123/mcj.6.2.129.
100. Eriksson PO, Zafar H, Nordh E. Concomitant mandibular and head-neck movements during jaw opening-closing in man. J Oral Rehabil. 1998;25(11):859-870. doi: 10.1046/j.1365-2842.1998.00333.x.
101. Falla D, Jull G, Hodges PW. Feedforward activity of the cervical flexor muscles during voluntary arm movements is delayed in chronic neck pain. Exp Brain Res. 2004;157(1):43-48. doi: 10.1007/s00221-003-1814-9.
102. Dessem D, Luo P. Jaw-muscle spindle afferent feed-back to the spinal cervical cord in the rat. Exp Brain Res. 1999;128(4):451-459. doi: 10.1007/s002210050868.
103. Devoize L, Doméjean S, Melin C, Raboisson P, Artola A, Dallel R. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: a neuroanatomical substrate for reciprocal orofacial-cervical interactions. Brain Res. 2010 Jul 9;1343:75-82. doi: 10.1016/j.brainres.2010.04.076.
104. Lobbezoo F, van der Glas HW, van der Bilt A, Buchner R, Bosman F. Sensitivity of the jaw-jerk reflex in patients with myogenous temporomandibular disorder. Arch Oral Biol. 1996 Jun;41(6):553-563. doi: 10.1016/0003-9969(96)00018-0.
105. Kitagawa Y, Enomoto S, Nakamura Y, Hashimoto K. Asymmetry in jaw-jerk reflex latency in craniomandibular dysfunction patients with unilateral masseter pain. J Oral Rehabil. 2000 Oct;27(10):902-910. doi: 10.1046/j.1365-2842.2000.00595.x.
106. Cruccu G, Frisardi G, van Steenberghe D. Side asymmetry of the jaw jerk in human craniomandibular dysfunction. Arch Oral Biol. 1992;37(4):257-262. doi: 10.1016/0003-9969(92)90047-c.
107. Cruccu G, Frisardi G, Pauletti G, Romaniello A, Manfredi M. Excitability of the central masticatory pathways in patients with painful temporomandibular disorders. Pain. 1997;73(3):447-454. doi: 10.1016/S0304-3959(97)00139-5.
108. Bodéré C, Téa SH, Giroux-Metges MA, Woda A. Activity of masticatory muscles in subjects with different orofacial pain conditions. Pain. 2005;116(1-2):33-41. doi: 10.1016/j.pain.2005.03.011. PMID: 15927390.
109. Asquini G, Devecchi V, Viscuso D, Bucci R, Michelotti A, Liew BXW, Falla D. An exploratory data-driven approach to classify subgroups of patients with temporomandibular disorders based on pain mechanisms. J Pain. 2025 Jan;26:104721. doi: 10.1016/j.jpain.2024.104721.
110. Konishi Y, McNair PJ, Rice DA, Ochiai S, Hagino T. Stretch reflex changes in ACL-deficient individuals and healthy controls during normal and surprise landings. Scand J Med Sci Sports. 2020;30(12):2342-2351. doi: 10.1111/sms.13810.
111. Pazzinatto MF, de Oliveira Silva D, Ferreira AS, Waiteman MC, Pappas E, Magalhães FH, Azevedo FM. Patellar tendon reflex and vastus medialis Hoffmann reflex are down regulated and correlated in women with patellofemoral pain. Arch Phys Med Rehabil. 2019 Mar;100(3):514-519. doi: 10.1016/j.apmr.2018.06.024.
112. Davi SM, Lepley AS, Denegar CR, DiStefano LJ, Edgar CM, Lepley LK. Quadriceps inhibition after naturally occurring patellar tendon damage and pain. J Athl Train. 2020 Jun 23;55(6):608-614. doi: 10.4085/1062-6050-27-19.
113. Alsaleh SA, Murphy NA, Miller SC, Morrissey D, Lack SD. Local neuromuscular characteristics associated with patellofemoral pain: a systematic review and meta-analysis. Clin Biomech (Bristol, Avon). 2021 Dec;90:105509. doi: 10.1016/j.clinbiomech.2021.105509. Epub 2021 Oct 6. Erratum in: Clin Biomech (Bristol, Avon). 2022 Aug;98:105718. doi: 10.1016/j.clinbiomech.2022.105718.
114. de Oliveira Silva D, Magalhães FH, Faria NC, Pazzinatto MF, Ferrari D, Pappas E, de Azevedo FM. Lower amplitude of the Hoffmann reflex in women with patellofemoral pain: thinking beyond proximal, local, and distal factors. Arch Phys Med Rehabil. 2016 Jul;97(7):1115-1120. doi: 10.1016/j.apmr.2015.12.017.
115. de Oliveira Silva D, Magalhães FH, Faria NC, et al. Vastus medialis Hoffmann reflex excitability is associated with pain level, self-reported function, and chronicity in women with patellofemoral pain. Arch Phys Med Rehabil. 2017;98(1):114-119. doi: 10.1016/j.apmr.2016.06.011.
116. Pazzinatto MF, de Oliveira Silva D, Pappas E, Magalhães FH, de Azevedo FM. Is quadriceps H-reflex excitability a risk factor for patellofemoral pain? Med Hypotheses. 2017;108:124-127. doi: 10.1016/j.mehy.2017.08.019.
117. Karst GM, Willett GM. Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Phys Ther. 1995;75(9):813-823. doi: 10.1093/ptj/75.9.813.
118. Witvrouw E, Lysens R, Bellemans J, et al. Which factors predict outcome in the treatment program of anterior knee pain? Scand J Med Sci Sports. 2002;12(1):40-46. doi: 10.1034/j.1600-0838.2002.120108.x.
119. Melo ASC, Taylor JL, Ferreira R, et al. Differences in trapezius muscle H-reflex between asymptomatic subjects and symptomatic shoulder pain subjects. Sensors (Basel). 2023 Apr 23;23(9):4217. doi: 10.3390/s23094217.
120. Kim KM, Kim JS, Needle AR. Soleus arthrogenic muscle inhibition following acute lateral ankle sprain correlates with symptoms and ankle disability but not with postural control. J Sport Health Sci. 2024;13(4):559-568. doi: 10.1016/j.jshs.2024.02.005.
121. Griffioen M, van Drunen P, Maaswinkel E, Perez RSGM, Happee R, van Dieën JH. Identification of intrinsic and reflexive contributions to trunk stabilization in patients with low back pain: a case-control study. Eur Spine J. 2020;29(8):1900-1908. doi: 10.1007/s00586-020-06385-9.
122. van Dieën JH, Flor H, Hodges PW. Low-back pain patients learn to adapt motor behavior with adverse secondary consequences. Exerc Sport Sci Rev. 2017;45(4):223-229. doi: 10.1249/JES.0000000000000121.
123. Wang K, Svensson P, Arendt-Nielsen L. Effect of tonic muscle pain on short-latency jaw-stretch reflexes in humans. Pain. 2000;88(2):189-197. doi: 10.1016/S0304-3959(00)00322-5.
124. Wang K, Arendt-Nielsen L, Svensson P. Excitatory actions of experimental muscle pain on early and late components of human jaw stretch reflexes. Arch Oral Biol. 2001;46(5):433-442. doi: 10.1016/s0003-9969(00)00137-0.
125. Matre DA, Sinkjaer T, Knardahl S, Andersen JB, Arendt-Nielsen L. The influence of experimental muscle pain on the human soleus stretch reflex during sitting and walking. Clin Neurophysiol. 1999;110(12):2033-2043. doi: 10.1016/s1388-2457(99)00211-4.
126. Matre DA, Sinkjaer T, Svensson P, Arendt-Nielsen L. Experimental muscle pain increases the human stretch reflex. Pain. 1998;75(2-3):331-339. doi: 10.1016/s0304-3959(98)00012-8.
127. Svensson P, De Laat A, Graven-Nielsen T, Arendt-Nielsen L. Experimental jaw-muscle pain does not change heteronymous H-reflexes in the human temporalis muscle. Exp Brain Res. 1998;121(3):311-318. doi: 10.1007/s002210050464.
128. Dixon J, Howe TE. Quadriceps force generation in patients with osteoarthritis of the knee and asymptomatic participants during patellar tendon reflex reactions: an exploratory cross-sectional study. BMC Musculoskelet Disord. 2005 Sep 1;6:46. doi: 10.1186/1471-2474-6-46.
129. Rice DA, McNair PJ, Lewis GN. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects. Arthritis Res Ther. 2011;13(5):R151. doi: 10.1186/ar3467.
130. Wang K, Arendt-Nielsen L, Jensen T, Svensson P. Reduction of clinical temporomandibular joint pain is associated with a reduction of the jaw-stretch reflex. J Orofac Pain. 2004;18(1):33-40. PMID: 15022534.
131. Sharav Y, McGrath PA, Dubner R. Masseter inhibitory periods and sensations evoked by electrical tooth pulp stimulation in patients with oral-facial pain and mandibular dysfunction. Arch Oral Biol. 1982;27(4):305-310. doi: 10.1016/0003-9969(82)90159-5.
132. Türker KS, Wilkinson TM, Miles TS. A comparison of the masseteric silent period in temporomandibular joint dysfunction and normal human subjects by surface electromyography and single motor-unit recordings. Arch Oral Biol. 1989;34(12):943-948. doi: 10.1016/0003-9969(89)90050-2.
133. Romaniello A, Cruccu G, Frisardi G, Arendt-Nielsen L, Svensson P. Assessment of nociceptive trigeminal pathways by laser-evoked potentials and laser silent periods in patients with painful temporomandibular disorders. Pain. 2003;103(1-2):31-39. doi: 10.1016/s0304-3959(02)00347-0.
134. Maillou P, Cadden SW. Characteristics of a jaw reflex in humans with temporomandibular disorders: a preliminary report. J Oral Rehabil. 2007;34(5):329-335. doi: 10.1111/j.1365-2842.2007.01723.x.
135. Romaniello A, Arendt-Nielsen L, Cruccu G, Svensson P. Modulation of trigeminal laser evoked potentials and laser silent periods by homotopical experimental pain. Pain. 2002;98(1-2):217-228. doi: 10.1016/s0304-3959(02)00049-0.
136. Lim ECW, Sterling M, Stone A, Vicenzino B. Central hyperexcitability as measured with nociceptive flexor reflex threshold in chronic musculoskeletal pain: a systematic review. Pain. 2011;152(8):1811-1820. doi: 10.1016/j.pain.2011.03.033.
137. Amiri M, Esmaili H, Hamad AH, Alavinia M, Masani K, Kumbhare D. Nociceptive flexion reflex threshold in chronic pain patients: a needed update for the current evidence. Am J Phys Med Rehabil. 2021 Aug 1;100(8):750-759. doi: 10.1097/PHM.0000000000001626.
138. Biurrun Manresa JA, Neziri AY, Curatolo M, Arendt-Nielsen L, Andersen OK. Reflex receptive fields are enlarged in patients with musculoskeletal low back and neck pain. Pain. 2013;154(8):1318-1324. doi: 10.1016/j.pain.2013.04.013.
139. Courtney CA, Lewek MD, Witte PO, Chmell SJ, Hornby TG. Heightened flexor withdrawal responses in subjects with knee osteoarthritis. J Pain. 2009;10(12):1242-1249. doi: 10.1016/j.jpain.2009.05.004.
140. Lim EC, Sterling M, Pedler A, Coombes BK, Vicenzino B. Evidence of spinal cord hyperexcitability as measured with nociceptive flexion reflex (NFR) threshold in chronic lateral epicondylalgia with or without a positive neurodynamic test. J Pain. 2012;13(7):676-684. doi: 10.1016/j.jpain.2012.04.005.
141. Sterling M. Differential development of sensory hypersensitivity and a measure of spinal cord hyperexcitability following whiplash injury. Pain. 2010;150(3):501-506. doi: 10.1016/j.pain.2010.06.003.
142. Van Oosterwijck S, Billens A, Cnockaert E, et al. Spinal hyperexcitability in patients with chronic musculoskeletal pain or headache as evidenced by alterations in the nociceptive withdrawal reflex: a systematic review and meta-analysis. Pain. 2025;166(5):1002-1029. doi: 10.1097/j.pain.0000000000003436.
143. Curatolo M, Müller M, Ashraf A, et al. Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain: prevalence and associated factors. Pain. 2015 Nov;156(11):2373-2382. doi: 10.1097/j.pain.0000000000000289.
144. Wallwork SB, Grabherr L, O'Connell NE, Catley MJ, Moseley GL. Defensive reflexes in people with pain - a biomarker of the need to protect? A meta-analytical systematic review. Rev Neurosci. 2017 May 24;28(4):381-396. doi: 10.1515/revneuro-2016-0057.
145. Massé-Alarie H, Hamer GV, Salomoni SE, Hodges PW. Nociceptive withdrawal reflexes of the trunk muscles in chronic low back pain. PLoS One. 2023 Jun 14;18(6):e0286786. doi: 10.1371/journal.pone.0286786.
146. Hodges PW. Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res. 2001;141(2):261-266. doi: 10.1007/s002210100873.
147. Falla D, O'Leary S, Farina D, Jull G. Association between intensity of pain and impairment in onset and activation of the deep cervical flexors in patients with persistent neck pain. Clin J Pain. 2011;27(4):309-314. doi: 10.1097/AJP.0b013e31820212cf.
148. Sterling M, Hodges P. Commentary on Spinal hyperexcitability in patients with chronic musculoskeletal pain or headache as evidenced by alterations in the nociceptive withdrawal reflex: a systematic review and meta-analysis. Pain. 2025 May 1;166(5):975-976. doi: 10.1097/j.pain.0000000000003567.
149. Shraim MA, Massé-Alarie H, Hall LM, Hodges PD. Systematic review and synthesis of mechanisms-based classification for pain experienced in the musculoskeletal system. Clin J Pain. 2020;36(10):793-812. doi: 10.1097/AJP.0000000000000860.
150. Hodges PW, Tucker K. Moving differently in pain: a new theory to explain the adaptation to pain. Pain. 2011;152(3 Suppl):S90-S98. doi: 10.1016/j.pain.2010.10.020.
151. Murray GM, Peck CC. Orofacial pain and jaw muscle activity: a new model. J Orofac Pain. 2007 Fall;21(4):263-278; discussion 279-288.
152. Ghez C. Muscles: effectors of the motor system. In: Kandel ER, Schwartz JH, Jessel TM (ed). Principles of Neural Science. New York: Edition Elsevier; 1991, 3rd ed. pp. 548-563.
153. Smith AM. Does the cerebellum learn strategies for the optimal time-varying control of joint stiffness? In: Cordo PJ, Bell CC, Harnad SR (eds). Motor learning and synaptic plasticity in the cerebellum. Cambridge: Cambridge University Press; 1997. pp. 61-72.
154. Moore JD, Deschênes M, Furuta T, et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature. 2013;497(7448):205-10. doi: 10.1038/nature12076.
155. Moore JD, Kleinfeld D, Wang F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 2014;37(7):370-380. doi: 10.1016/j.tins.2014.05.001.
156. Maffei C, Mello MM, Biase NG, et al. Videofluoroscopic evaluation of mastication and swallowing in individuals with TMD. Braz J Otorhinolaryngol. 2012 Jul-Aug;78(4):24-28. doi: 10.1590/S1808-86942012000400006.
157. Tong MH, Mousavi SJ, Kiers H, Ferreira P, Refshauge K, van Dieën J. Is there a relationship between lumbar proprioception and low back pain? A systematic review with meta-analysis. Arch Phys Med Rehabil. 2017;98(1):120-136.e2. doi: 10.1016/j.apmr.2016.05.016.
158. Testa M, Geri T, Pitance L, et al. Alterations in jaw clenching force control in people with myogenic temporomandibular disorders. J Electromyogr Kinesiol. 2018 Dec;43:111-117. doi: 10.1016/j.jelekin.2018.07.007.
159. Dinsdale A, Thomas L, Forbes R, Treleaven J. Is proprioception affected in those with persistent intra-articular temporomandibular disorders? A cross-sectional study exploring joint position sense and force sense of the jaw. Musculoskelet Sci Pract. 2024 Feb;69:102904. doi: 10.1016/j.msksp.2023.102904.
160. Graber, TM. The “three M's”: Muscles, malformation, and malocclusion. American Journal of Orthodontics. 1963 ;49(6):418-450. doi:10.1016/0002-9416(63)90167-2.
161. Andersen, WS. The relationship of the tongue-thrust syndrome to maturation and other factors. American Journal of Orthodontics 1963;49(4):264-275. doi:10.1016/0002-9416(63)90003-4.
162. Barone M, Imaz F, Converso G, et al. Immediate effects of rhythmic joint mobilization of the temporomandibular joint on pain, mouth opening and electromyographic activity in patients with temporomandibular disorders. J Bodyw Mov Ther. 2021 Oct;28:563-569. doi: 10.1016/j.jbmt.2021.09.001.
163. Fassicollo CE, Graciosa M D, de Medeiros DL, Soares LP, Mochizuki L, Ries LGK. Standardized mastication increases the coordination in masticatory activity in women with chronic temporomandibular joint disorders: a case control study. Manual Therapy, Posturology and Rehabilitation Journal, 2019 Dec ;1-7. doi.org/10.17784/mtprehabjournal.2019.17.731.
164. Zampino C, Ficacci R, Checcacci M, Franciolini F, Catacuzzeno L. Pain control by proprioceptive and exteroceptive stimulation at the trigeminal level. Front Physiol. 2018 Aug 7;9:1037. doi: 10.3389/fphys.2018.01037.
165. Roll R, Kavounoudias A, Albert F, et al. Illusory movements prevent cortical disruption caused by immobilization. Neuroimage. 2012 Aug 1;62(1):510-519. doi: 10.1016/j.neuroimage.2012.05.016.
166. Gavish A, Winocur E, Astandzelov-Nachmias T, Gazit E. Effect of controlled masticatory exercises on pain and muscle performance in myofascial pain patients: a pilot study. Cranio. 2006;24(3):184-190. doi: 10.1179/crn.2006.030.
167. Gavish A, Winocur E, Menashe S, Halachmi M, Eli I, Gazit E. Experimental chewing in myofascial pain patients. J Orofac Pain. 2002;16(1):22-28. PMID: 11889656.
168. Karibe H, Goddard G, Gear RW. Sex differences in masticatory muscle pain after chewing. J Dent Res. 2003;82(2):112-116. doi: 10.1177/154405910308200207.
169. Ferreira CLP, Bellistri G, Montagna S, de Felício CM, Sforza C. Patients with myogenic temporomandibular disorders have reduced oxygen extraction in the masseter muscle. Clin Oral Investig. 2017;21(5):1509-1518. doi: 10.1007/s00784-016-1912-2.
170. Fougeront, N, Fleiter, B. Localised muscle pain and dysfunction: a review of theoretical and suppositional biological effects of jaw exercises. Int J Stomatol Occlusion Med. 2010;3(3):150-158. doi :10.1007/s12548-010-0064-2.
171. Michelotti A, Farella M, Gallo LM, Veltri A, Palla S, Martina R. Effect of occlusal interference on habitual activity of human masseter. J Dent Res. 2005;84(7):644-648. doi: 10.1177/154405910508400712.
172. Michelotti A, Farella M, Steenks MH, Gallo LM, Palla S. No effect of experimental occlusal interferences on pressure pain thresholds of the masseter and temporalis muscles in healthy women. Eur J Oral Sci. 2006;114(2):167-170. doi: 10.1111/j.1600-0722.2006.00298.x.
173. Le Bell Y, Jämsä T, Korri S, Niemi PM, Alanen P. Effect of artificial occlusal interferences depends on previous experience of temporomandibular disorders. Acta Odontol Scand. 2002 Aug;60(4):219-222. doi: 10.1080/000163502760147981.
174. Le Bell Y, Niemi PM, Jämsä T, Kylmälä M, Alanen P. Subjective reactions to intervention with artificial interferences in subjects with and without a history of temporomandibular disorders. Acta Odontol Scand. 2006;64(1):59-63. doi: 10.1080/00016350500419867.
175. Cairns B, List T, Michelotti A, Ohrbach R, Svensson P. JOR-CORE recommendations on rehabilitation of temporomandibular disorders. J Oral Rehabil. 2010;37(6):481-489. doi: 10.1111/j.1365-2842.2010.02082.x.
176. Manfredini D, Häggman-Henrikson B, Al Jaghsi A, et al. International Network for Orofacial Pain and Related Disorders Methodology. Temporomandibular disorders: INfORM/IADR key points for good clinical practice based on standard of care. Cranio. 2025;43(1):1-5. doi: 10.1080/08869634.2024.2405298.
177. Cairns BE. Pathophysiology of TMD pain--basic mechanisms and their implications for pharmacotherapy. J Oral Rehabil. 2010;37(6):391-410. doi: 10.1111/j.1365-2842.2010.02074.x.
178. Dao TT, Lavigne GJ. Oral splints: the crutches for temporomandibular disorders and bruxism? Crit Rev Oral Biol Med. 1998;9(3):345-361. doi: 10.1177/10454411980090030701.
179. Schindler HJ, Svensson P. Myofascial temporomandibular disorder. Pathophysiology and management in Türp JC, Sommer C, Hugger A. The puzzle of orofacial pain. Integrating research into clinical management. Pain and headache. Reichmann (ed.). Bassel: Karger; 2007, vol 15. pp. 91-123.
180. Michelotti A, Rongo R, D'Antò V, Bucci R. Occlusion, orthodontics, and temporomandibular disorders: cutting edge of the current evidence. J World Fed Orthod. 2020 Oct;9(3S):S15-S18. doi: 10.1016/j.ejwf.2020.08.003.