Hydralazine Induced Immunologic Response by scRNA-Seq with Olink Proteomics Associated with Survival Time of pancreatic cancer

Main Article Content

Baofa Yu, MD Feng Gao, MD Peng Jing, MD Peicheng Zhang, MD Guoqin Zheng Shengjun Zhou, MD

Abstract

Background: Pancreatic cancer is a highly lethal cancer with no treatment options when diagnosed at an advanced stage. Hapten combined with chemotherapy drugs have been successfully injected into the tumor for local treatment of pancreatic cancer, but due to the heterogeneity of the tumor, the survival time of patients with similar stages is different.


Methods: SCNA-SEQ and Olink proteomics methods were used to observe the cell and genome changes in the survival group treated with hyrazine combined with HEIC for more than 10 months and less than 6 months. scRNA-Seq shows T cell activity of cDCs and polygene-expressed pDCs.


Results: scRNA-Seq confirmed the initiation of immune response: NaiveT and CD8Teff increased, proliferation increased, NK decreased, and ribosomal protein gene upregulated after treatment. The Neutrophils_4 gene set score of precursor cell neutrophilS_4 was higher. There was high expression of interferon-stimulating gene in neutrophils s_3, and high expression of s_3 characteristic gene set in interferon-associated neutrophils. Due to immune action, proteomic results showed that GZMB, GZMZ, IL18, CASP-8, CD8A, HO-1 and AOA genes were up-regulated by 8%. DCN, MCP-1, CX3cl1, CD40, CD27, IL33, TIE2, Gal-9, PGE, MCP-3, CD28, PD-L1, CD38, CCL3, MCP-2, MMP7, laptgf-β-1 genes were down-regulated by 18%.


Conclusions: Overall, the study showed that patients with similar stages of pancreatic cancer had an enhanced immune response after the same regimen of HEIC treatment, and found that gene expression increased by 8% and decreased by 18% in the longer survival group compared with the shorter survival group due to tumor heterogeneity.

Keywords: Local drug delivery, Hydralazine induces immunity Immune response with local therapy, Hapten enhanc intratumoral therapy, scRNA-Seq, Olink Proteomics

Article Details

How to Cite
YU, Baofa et al. Hydralazine Induced Immunologic Response by scRNA-Seq with Olink Proteomics Associated with Survival Time of pancreatic cancer. Medical Research Archives, [S.l.], v. 13, n. 4, may 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6571>. Date accessed: 23 june 2025. doi: https://doi.org/10.18103/mra.v13i4.6571.
Section
Research Articles

References

1. Mizrahi JD., Surana R., Valle JV., et al. Pancreatic cancer. Lancet. 2020 Jun 27;395(10242):2008-2020. doi: 10.1016/S0140-6736(20)30974-0.
2. Neoptolemos JP., JKleeff J., Patrick Michl P. et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018 Jun;15(6):333-348. doi: 10.1038/s41575-018-0005-x.
3. Yu B.F., Han Y., Fu Q., et al. Awaken Immune Cells by Hapten Enhanced Intratumoral Chemotherapy with Penicillin Prolong Pancreatic Cancer Survival. Journal of Cancer.2023; 14(8): 1282-1292. doi: 10.7150/jca.82985.
4. Yu B.F., Fu. Q., Han Y., Zhang J., Chen D. (2022). An Acute Inflammation with Special Expression of CD11 & CD4 Produces Abscopal Effect by Intratumoral Injection Chemotherapy Drug with Hapten in Animal Model. J Immunological Sci 6, 1-9.
5. Kechin, A., Boyarskikh, U., Kel, A., et al. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing. J Comput Biol. 2017 Nov; 24(11):1138-1143. doi: 10.1089/cmb.2017.0096. Epub 2017 Jul 17.
6. Yu, B., Gao, F., Jing, P., et al. Cancer Immunotherapy Preparation and Immune Cells Activation through Hapten-Enhanced Chemotherapy in Primary Lung Cancer. J Basic Clin Pharma. 2023, 14(S1):10-16.
7. Dobin, A., Davis, C.A., Schlesinger, F., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1; 29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25.
8. Arce C., Segura-Pacheco B., Enrique Perez-Cardenas E., et al. Hydralazine target: from blood vessels to the epigenome. J Transl Med. 2006 Feb 28:4:10. doi: 10.1186/1479-5876-4-10.
9. Mitchell J A., Gillam E M., Stanley L A., et al Immunotoxic side-effects of drug therapy. Drug Saf. 1990 May-Jun;5(3):168-78. doi: 10.2165/00002018-199005030-00002.
10. Sim E. Drug-induced immune-complex disease. Complement Inflamm. 1989;6(2):119-26. doi: 10.1159/000463084.
11. Hofstra A H., Uetrecht J P. Reactive intermediates in the oxidation of hydralazine by HOCl: the major oxidant generated by neutrophils. Chem Biol Interact. 1993 Dec;89(2-3):183-96. doi: 10.1016/0009-2797(93)90008-m.
12. Yu B., Han Y., Zhang J. et al. Acute Tumor Infammation with CD4/8+ and CD11+ Prolong the Survival Effect Induced by Intratumral Injection Optimum Combination of Chemotherapy Drugs with Hydralazine as Hapten in Animal Model. Japanese Journal of Gastroenterology and Hepatology. (2022), May, V8 (17): 1-7
13. Ding Z., Wang N., Ji N., et al. Proteomics technologies for cancer liquid biopsies. Mol Cancer. 2022 Feb 15;21(1):53. doi: 10.1186/s12943-022-01526-8.
14. Bao XH., Chen BF., Liu J., et al. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Front Mol Neurosci. 2023 May 24:16:1185021. doi: 10.3389/fnmol.2023.1185021. eCollection 2023.
15. Wang X., Nissen M., Gracias D., et al. Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk. Nat Commun. 2022 Nov 9;13(1):6772. doi: 10.1038/s41467-022-34408-0.
16. Qiu, X.J., Hill, A., Packer, J., et al. Single-cell mRNA quantification and differential analysis with Census. Nat Method. 2017 Mar; 14(3):309-315. doi: 10.1038/nmeth.4150. Epub 2017 Jan 23.
17. Andreatta, M., Carmona, S.J. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. 19,3796-3798 (2021).
18. Ebright RY., Lee S., Wittner BS., et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science. 2020 Mar 27;367(6485):1468-1473. doi: 10.1126/science. aay0939. Epub 2020 Feb 6.
19. Schneider WM., Chevillotte MD., Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014:32:513-45. doi: 10.1146/annurev-immunol-032713-120231. Epub 2014 Feb 6.
20. Lin M., Zhang Z., Gao M., et al. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression.Cancer Manag Res. 2019 Jun 12:11:5353-5363. doi: 10.2147/CMAR.S208233. eCollection 2019.
21. Mitri DD., Toso A., Chen JJ., et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014 Nov 6;515(7525):134-7. doi: 10.1038/nature13638. Epub 2014 Aug 24.
22. Havel JJ., Chowell D., Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019 Mar;19(3):133-150. doi: 10.1038/s41568-019-0116-x.
23. Yao RQ., Zhao PY., Li ZX., et al. Single-cell transcriptome profiling of sepsis identifies HLA-DRlowS100Ahigh monocytes with immunosuppressive function. Mil Med Res. 2023 Jun 19;10(1):27. doi: 10.1186/s40779-023-00462-y.
24. Asano N., Matsuzaki J.,Ichikawa M., et al. A serum microRNA classifier for the diagnosis of sarcomas of various histological subtypes. Nat Commun. 2019 Mar 21;10(1):1299. doi: 10.1038/s41467-019-09143-8.
25. Terekhova M., Swain A., Bohacova P., et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C+GZMB-CD8+ memory T cells and accumulation of type 2 memory T cells. Immunity. 2023 Dec 12;56(12):2836-2854.e9. doi: 10.1016/j.immuni.2023.10.013. Epub 2023 Nov 13.
26. Lutz V., Hellmund VM., Picard FSR., et al. IL18 Receptor Signaling Regulates Tumor-Reactive CD8+ T-cell Exhaustion via Activation of the IL2/STAT5/mTOR Pathway in a Pancreatic Cancer Model. Cancer Immunol Res. 2023 Apr 3;11(4):421-434. doi: 10.1158/2326-6066.CIR-22-0398.
27. Vecchié A., Bonaventura A., Toldo S., et al. IL-18 and infections: Is there a role for targeted therapies? J Cell Physiol. 2021 Mar;236(3):1638-1657. doi: 10.1002/jcp.30008. Epub 2020 Aug 13.
28. Zhang YJ., Zhong XP., Chen Y., et al. Association between CASP-8 gene polymorphisms and cancer risk in some Asian population based on a HuGE review and meta-analysis. Genet Mol Res. 2013 Feb 28;12(4):6466-76. doi: 10.4238/2013. February.28.3.
29. Zhou S., Lu H., Xiong M. Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis. Front Immunol. 2021 Aug 13:12:726747. doi: 10.3389/fimmu.2021.726747. eCollection 2021.
30. Chiang SK., Chen SE., Ling-Chu Chang LC. The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells. 2021 Sep 13;10(9):2401. doi: 10.3390/cells10092401.
31. Guo Y., Chen T., Liang X., et al. Tumor Cell Derived Exosomal GOT1 Suppresses Tumor Cell Ferroptosis to Accelerate Pancreatic Cancer Progression by Activating Nrf2/HO-1 Axis via Upregulating CCR2 Expression. Cells. 2022 Dec 2;11(23):3893. doi: 10.3390/cells11233893.
32. Li J., Byrne KT., Yan F., et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018 Jul 17;49(1):178-193.e7. doi: 10.1016/j.immuni.2018.06.006. Epub 2018 Jun 26.
33. Bluestein BM., Morrish F., Graham DJ., et al. Analysis of the Myc-induced pancreatic β cell islet tumor microenvironment using imaging ToF-SIMS. Biointerphases. 2018 Aug 28;13(6):06D402. doi: 10.1116/1.5038574.
34. Peng J., Sun BF., Chen CY., et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019 Sep;29(9):725-738. doi: 10.1038/s41422-019-0195-y. Epub 2019 Jul 4.