Olfactory Dysfunction as a Predictive Biomarker for Postoperative Delirium Risk Assessment

Main Article Content

Marcos A. Lessa, MD, PhD Eric Slawka, MD

Abstract

Postoperative delirium is a common and serious complication of surgery, particularly in older adults. Despite its impact on outcomes and healthcare costs, effective preoperative tools to identify high-risk patients remain limited. This review evaluates the potential role of olfactory dysfunction as a noninvasive biomarker for predicting postoperative delirium, based on its strong association with brain vulnerability and neurodegenerative risk. Olfactory dysfunction is prevalent in patients with neurodegenerative and psychiatric disorders, as well as in aging populations—groups already at high risk for postoperative cognitive complications. It reflects key pathophysiological mechanisms shared with delirium, including neuroinflammation, cholinergic disruption, and corticolimbic network breakdown. Recent studies in surgical populations, including cardiac procedures, suggest that preoperative olfactory testing correlates with increased incidence and severity of postoperative delirium. Olfactory testing is inexpensive, rapid, and scalable, making it a feasible addition to preoperative evaluations. Its integration may enable personalized risk stratification and proactive cognitive management in perioperative care. Olfactory dysfunction offers a promising, biologically grounded strategy to identify patients at risk for postoperative delirium. Future studies should standardize testing protocols, validate its predictive value, and explore its role within multimodal perioperative risk models.

Keywords: olfactory dysfunction, postoperative delirium, perioperative risk stratification, neurodegeneration, neuroinflammation

Article Details

How to Cite
LESSA, Marcos A.; SLAWKA, Eric. Olfactory Dysfunction as a Predictive Biomarker for Postoperative Delirium Risk Assessment. Medical Research Archives, [S.l.], v. 13, n. 9, oct. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6579>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i9.6579.
Section
Research Articles

References

1. Inouye SK. Delirium in older persons. N Engl J Med. Mar 16 2006;354(11):1157-65. doi:10.1056/N EJMra052321

2. Brown CHt, Probert J, Healy R, et al. Cognitive Decline after Delirium in Patients Undergoing Cardiac Surgery. Anesthesiology. Sep 2018;129(3): 406-416. doi:10.1097/ALN.0000000000002253

3. Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA. Jul 28 2010;304(4):443-51. doi:10.1001/jam a.2010.1013

4. Saczynski JS, Marcantonio ER, Quach L, et al. Cognitive trajectories after postoperative delirium. N Engl J Med. Jul 5 2012;367(1):30-9. doi:10.105 6/NEJMoa1112923

5. Leslie DL, Marcantonio ER, Zhang Y, Leo-Summers L, Inouye SK. One-year health care costs associated with delirium in the elderly population. Arch Intern Med. Jan 14 2008;168(1):27-32. doi:10.1001/archinternmed.2007.4

6. Ross GW, Petrovitch H, Abbott RD, et al. Association of olfactory dysfunction with risk for future Parkinson's disease. Ann Neurol. Feb 2008; 63(2):167-73. doi:10.1002/ana.21291

7. Devanand DP, Michaels-Marston KS, Liu X, et al. Olfactory deficits in patients with mild cognitive impairment predict Alzheimer's disease at follow-up. Am J Psychiatry. Sep 2000;157(9):1399-405. doi:10.1176/appi.ajp.157.9.1399

8. Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL. Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology. Sep 1999;21(3):325-40. doi:10.1016/S0893-133X(99)00019-6

9. Eliyan Y, Wroblewski KE, McClintock MK, Pinto JM. Olfactory Dysfunction Predicts the Development of Depression in Older US Adults. Chem Senses. Jan 1 2021;46doi:10.1093/chemse/bjaa075

10. Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. Jun 2017; 16(6):478-488. doi:10.1016/S1474-4422(17)30123-0

11. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. Dec 2013;21 (12):1190-222. doi:10.1016/j.jagp.2013.09.005

12. Brown CHt, Morrissey C, Ono M, et al. Impaired olfaction and risk of delirium or cognitive decline after cardiac surgery. J Am Geriatr Soc. Jan 2015; 63(1):16-23. doi:10.1111/jgs.13198

13. Kamath V, Yanek LR, Neufeld KJ, et al. Poor olfaction prior to cardiac surgery: Association with cognition, plasma neurofilament light, and post-operative delirium. Int J Geriatr Psychiatry. Feb 2024;39(2):e6066. doi:10.1002/gps.6066

14. Aldecoa C, Bettelli G, Bilotta F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. Apr 2017;34(4):192-214. doi:10.1097/EJA.0000000000000594

15. Hughes CG, Boncyk CS, Culley DJ, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Postoperative Delirium Prevention. Anesth Analg. Jun 2020;130(6):1572-1590. doi:10.1213/ANE.0000000000004641

16. Li C, Wei L, Gong H, Yuan X. Incidence and predictors of postoperative delirium following remimazolam administration: a systematic review and meta-analysis of 29 randomized trials. BMC Anesthesiol. Apr 23 2025;25(1):201. doi:10.1186/s 12871-025-03018-w

17. Suzuki R, Nakanishi A, Masuya M, Fukuroku K, Taneda Y, Matsuura Y. Risk factors for postoperative delirium in patients undergoing orthopedic procedures: a systematic review and meta-analysis. PLoS ONE. 2025;20(4):e0321025. doi:10.1371/jour nal.pone.0321025

18. Deiner S, Silverstein JH. Postoperative delirium and cognitive dysfunction. Br J Anaesth. Dec 2009; 103 Suppl 1(Suppl 1):i41-46. doi:10.1093/bja/aep291

19. Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. Jan 4 2012; 87(1):10-20. doi:10.1016/j.brainresbull.2011.10.004

20. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. Jul 25 2013;8(21):2003-14. doi:10.3969/j.issn.1673-5374.2013.21.009

21. Uchikado H, Akiyama H, Kondo H, et al. Activation of vascular endothelial cells and perivascular cells by systemic inflammation-an immunohistochemical study of postmortem human brain tissues. Acta Neuropathol. Apr 2004;107 (4):341-51. doi:10.1007/s00401-003-0815-x

22. van Montfort SJT, van Dellen E, Stam CJ, et al. Brain network disintegration as a final common pathway for delirium: a systematic review and qualitative meta-analysis. Neuroimage Clin. 2019; 23:101809. doi:10.1016/j.nicl.2019.101809

23. Ditzel FL, van Montfort SJT, Vernooij LM, et al. Functional brain network and trail making test changes following major surgery and postoperative delirium: a prospective, multicentre, observational cohort study. Br J Anaesth. Feb 2023;130(2):e281-e288. doi:10.1016/j.bja.2022.07.054

24. Sabandal PR, Saldes EB, Han KA. Acetylcholine deficit causes dysfunctional inhibitory control in an aging-dependent manner. Sci Rep. Dec 3 2022; 12(1):20903. doi:10.1038/s41598-022-25402-z

25. Bugiani O. Why is delirium more frequent in the elderly? Neurol Sci. Aug 2021;42(8):3491-3503. doi:10.1007/s10072-021-05339-3

26. Paunikar S, Chakole V. Postoperative Delirium and Neurocognitive Disorders: A Comprehensive Review of Pathophysiology, Risk Factors, and Management Strategies. Cureus. Sep 2024;16(9): e68492. doi:10.7759/cureus.68492

27. Sarnat HB, Flores-Sarnat L. Chapter 3 - Development of the human olfactory system. In: Doty RL, ed. Handbook of Clinical Neurology. Elsevier; 2019:29-45.

28. Kovacs T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev. Apr 2004;3(2):215-32. doi:10.1016/j.arr.2 003.10.003

29. Baba T, Kikuchi A, Hirayama K, et al. Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson's disease: a 3 year longitudinal study. Brain. Jan 2012;135(Pt 1):161-9. doi:10.1093/brain/awr321

30. Zou YM, Lu D, Liu LP, Zhang HH, Zhou YY. Olfactory dysfunction in Alzheimer's disease. Neuropsychiatr Dis Treat. 2016;12:869-75. doi:10.21 47/NDT.S104886

31. Kaya E, Goker AE. Olfactory Dysfunction: Its Association With Subjective Cognitive Impairment in Patients With Major Depression. J Nerv Ment Dis. Mar 1 2022;210(3):172-178. doi:10.1097/NM D.0000000000001435

32. Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol. 2014;5:20. doi:10.3389/fpsyg.2014.00020

33. Rawson NE. Olfactory loss in aging. Sci Aging Knowledge Environ. Feb 8 2006;2006(5):pe6. doi:10.1126/sageke.2006.5.pe6

34. Seubert J, Laukka EJ, Rizzuto D, et al. Prevalence and Correlates of Olfactory Dysfunction in Old Age: A Population-Based Study. J Gerontol A Biol Sci Med Sci. Aug 1 2017;72(8):1072-1079. doi:10.1093/gerona/glx054

35. Wang J, Eslinger PJ, Doty RL, et al. Olfactory deficit detected by fMRI in early Alzheimer's disease. Brain Res. Oct 21 2010;1357:184-94. doi:10.1016/j.b rainres.2010.08.018

36. Liu ZY, Vaira LA, Boscolo-Rizzo P, Walker A, Hopkins C. Post-viral olfactory loss and parosmia. BMJ Med. 2023;2(1):e000382. doi:10.1136/bmjmed-2022-000382

37. Suzuki M, Saito K, Min WP, et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. Feb 2007;117(2):272-7. doi:10.1097/01.mlg.0000249922.37381.1e

38. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. Jul 31 2020;6(31)doi:10.1126/sciadv.abc5801

39. Perlman S, Jacobsen G, Afifi A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology. Jun 1989; 170(2):556-60. doi:10.1016/0042-6822(89)90446-7

40. Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. Oct 2020;89:579-586. doi:10.1016/j.bbi.2 020.06.032

41. Lechien JR, Saussez S. Injection of Platelet Rich Plasma in the Olfactory Cleft for COVID-19 Patients With Persistent Olfactory Dysfunction: Description of the Technique. Ear Nose Throat J. Jun 2024;103 (1_suppl):115S-119S. doi:10.1177/014556132211 24773

42. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. Jun 1 2020;58(3):299-301. doi:10.4193/Rhin20.114

43. Liu X, Lei Z, Gilhooly D, et al. Traumatic brain injury-induced inflammatory changes in the olfactory bulb disrupt neuronal networks leading to olfactory dysfunction. Brain Behav Immun. Nov 2023;114:22-45. doi:10.1016/j.bbi.2023.08.004

44. Bratt M, Skandsen T, Hummel T, et al. Frequency and prognostic factors of olfactory dysfunction after traumatic brain injury. Brain Inj. 2018;32(8):1021-1027. doi:10.1080/02699052.201 8.1469043

45. Tai K, Leland EM, Seal SM, Schneider ALC, Rowan NR, Kamath V. Olfactory Dysfunction Following Moderate to Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neuropsychol Rev. Dec 2023;33(4):717-732. doi:10.1007/s11065-022-09563-2

46. Schofield PW, Moore TM, Gardner A. Traumatic brain injury and olfaction: a systematic review. Front Neurol. 2014;5:5. doi:10.3389/fneur.2014.00005

47. Howell J, Costanzo RM, Reiter ER. Head trauma and olfactory function. World J Otorhinolaryngol Head Neck Surg. Mar 2018;4(1):39-45. doi:10.1016/j.wjo rl.2018.02.001
48. Doty RL, Yousem DM, Pham LT, Kreshak AA, Geckle R, Lee WW. Olfactory dysfunction in patients with head trauma. Arch Neurol. Sep 1997;54(9):11 31-40. doi:10.1001/archneur.1997.00550210061014

49. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. Apr 2014;127(4):459-75. doi:10.100 7/s00401-014-1261-7

50. Wilson RS, Schneider JA, Arnold SE, Tang Y, Boyle PA, Bennett DA. Olfactory identification and incidence of mild cognitive impairment in older age. Arch Gen Psychiatry. Jul 2007;64(7):802-8. doi:10.1001/archpsyc.64.7.802

51. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. Curr Neurol Neurosci Rep. Sep 2006; 6(5):379-86. doi:10.1007/s11910-996-0018-7

52. Devanand DP. Olfactory Identification Deficits, Cognitive Decline, and Dementia in Older Adults. Am J Geriatr Psychiatry. Dec 2016;24(12):1151-1157. doi:10.1016/j.jagp.2016.08.010

53. Doty RL, Perl DP, Steele JC, et al. Olfactory dysfunction in three neurodegenerative diseases. Geriatrics. Aug 1991;46 Suppl 1:47-51.

54. Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. Sep 2010;11 (9):628-41. doi:10.1038/nrn2883

55. Haehner A, Hummel T, Reichmann H. Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev Neurother. Dec 2009;9(12): 1773-9. doi:10.1586/ern.09.115

56. Postuma RB, Berg D. Prodromal Parkinson's Disease: The Decade Past, the Decade to Come. Mov Disord. May 2019;34(5):665-675. doi:10.100 2/mds.27670

57. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. Mar-Apr 2003;24(2):197-211. doi:10.1016/s 0197-4580(02)00065-9

58. Torres-Pasillas G, Chi-Castaneda D, Carrillo-Castilla P, et al. Olfactory Dysfunction in Parkinson's Disease, Its Functional and Neuroanatomical Correlates. NeuroSci. Jun 2023;4(2):134-151. doi:10.3390/neurosci4020013

59. Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis. Jun 2012;46(3): 527-52. doi:10.1016/j.nbd.2011.10.026

60. Cieri F, Giriprakash PP, Nandy R, et al. Functional connectivity differences of the olfactory network in Parkinson's Disease, mild cognitive impairment and cognitively normal individuals: A resting-state fMRI study. Neuroscience. Nov 1 2024; 559:8-16. doi:10.1016/j.neuroscience.2024.08.031

61. Son G, Jahanshahi A, Yoo SJ, et al. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep. Jun 2021; 54(6):295-304. doi:10.5483/BMBRep.2021.54.6.055

62. Yang K, Hasegawa Y, Bhattarai JP, et al. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. Mol Psychiatry. May 2024;29 (5):1453-1464. doi:10.1038/s41380-024-02425-8

63. Kamath V, Lasutschinkow P, Ishizuka K, Sawa A. Olfactory Functioning in First-Episode Psychosis. Schizophr Bull. Apr 6 2018;44(3):672-680. doi:10.1093/schbul/sbx107

64. Wang Q, Li Z, Li J, et al. Volumetric MRI correlates of persistent auditory verbal hallucinations and olfactory identification impairment in chronic schizophrenia: A cross-sectional study. Prog Neuropsychopharmacol Biol Psychiatry. Jan 10 2025; 136:111204. doi:10.1016/j.pnpbp.2024.111204

65. Moberg PJ, Kamath V, Marchetto DM, et al. Meta-analysis of olfactory function in schizophrenia, first-degree family members, and youths at-risk for psychosis. Schizophr Bull. Jan 2014;40(1):50-9. doi:10.1093/schbul/sbt049

66. Fukuda S, Ohi K, Fujikane D, et al. Olfactory identification ability among schizophrenia patients, their first-degree relatives and healthy subjects. Aust N Z J Psychiatry. Oct 2023;57(10):1367-1374. doi:10.1177/00048674231164568

67. Herrmann T, Koeppel C, Linn J, Croy I, Hummel T. Olfactory brain activations in patients with Major Depressive Disorder. Sci Rep. Jun 21 2023;13(1): 10072. doi:10.1038/s41598-023-36783-0

68. Carnemolla SE, Hsieh JW, Sipione R, et al. Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: A systematic review. Neurosci Biobehav Rev. Nov 2020;118:588-611. doi:10.1016/j.neubiorev.2020.08.002

69. Kamath V, Paksarian D, Cui L, Moberg PJ, Turetsky BI, Merikangas KR. Olfactory processing in bipolar disorder, major depression, and anxiety. Bipolar Disord. Sep 2018;20(6):547-555. doi:10.11 11/bdi.12625

70. Dileo JF, Brewer WJ, Hopwood M, Anderson V, Creamer M. Olfactory identification dysfunction, aggression and impulsivity in war veterans with post-traumatic stress disorder. Psychol Med. Apr 2008;38(4):523-31. doi:10.1017/S0033291707001456

71. Crow AJD, Janssen JM, Vickers KL, Parish-Morris J, Moberg PJ, Roalf DR. Olfactory Dysfunction in Neurodevelopmental Disorders: A Meta-analytic Review of Autism Spectrum Disorders, Attention Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder. J Autism Dev Disord. Aug 2020;50(8):2685-2697. doi:10.1007/s10803-020-04376-9

72. Bora A, Uzun Cicek A. Olfactory Impairment in Children and Adolescents With Obsessive-Compulsive Disorder. J Nerv Ment Dis. Nov 2020;208(11):890-896. doi:10.1097/NMD.0000000000001231

73. Shepherd GM. Smell images and the flavour system in the human brain. Nature. Nov 16 2006; 444(7117):316-21. doi:10.1038/nature05405

74. Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci. Jan 13 2010;30(2):505-14. doi:10.1523/J NEUROSCI.4622-09.2010

75. Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res. Aug 10 2011; 221(2):564-73. doi:10.1016/j.bbr.2009.12.048

76. Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. May 15 2012;8(6):329-39. doi:10.1038/nrneurol.2012.80

77. Shah UH, Gonzalez-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci. Jul 17 2019;10(7): 3068-3077. doi:10.1021/acschemneuro.9b00044

78. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. Dec 2021;27(6):582-603. doi:10.1177/1073858420956905

79. Mayer MG, Fischer T. Shared Mechanisms of Blood-Brain Barrier Dysfunction and Neuroinflammation in COVID-19 and Alzheimer's Disease. Am J Pathol. Apr 18 2025; doi:10.1016/j.a jpath.2025.03.011

80. Greaves D, Psaltis PJ, Ross TJ, et al. Cognitive outcomes following coronary artery bypass grafting: A systematic review and meta-analysis of 91,829 patients. Int J Cardiol. Aug 15 2019;289:43-49. doi:10.1016/j.ijcard.2019.04.065

81. Rudolph JL, Marcantonio ER. Review articles: postoperative delirium: acute change with long-term implications. Anesth Analg. May 2011;112(5): 1202-11. doi:10.1213/ANE.0b013e3182147f6d

82. Russell MD, Pinkerton C, Sherman KA, Ebert TJ, Pagel PS. Predisposing and Precipitating Factors Associated With Postoperative Delirium in Patients Undergoing Cardiac Surgery at a Veterans Affairs Medical Center: A Pilot Retrospective Analysis. J Cardiothorac Vasc Anesth. Aug 2020;34(8):2103-2110. doi:10.1053/j.jvca.2020.02.004

83. Guo Y, Li C, Mu Y, Wu T, Lin X. Incidence and Associated Factors of Postoperative Delirium in Adults Undergoing Cardiac Surgery With Cardiopulmonary Bypass: A Prospective Cohort Study. J Clin Nurs. Dec 9 2024;doi:10.1111/jocn.1 7596

84. Palmquist E, Larsson M, Olofsson JK, Seubert J, Backman L, Laukka EJ. A Prospective Study on Risk Factors for Olfactory Dysfunction in Aging. J Gerontol A Biol Sci Med Sci. Feb 14 2020;75(3):603-610. doi:10.1093/gerona/glz265

85. Marcantonio ER, Ngo LH, O'Connor M, et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study. Ann Intern Med. Oct 21 2014;161(8):554-61. doi:10.7326/M14-0865

86. Bohnen NI, Muller ML, Kotagal V, et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease. Brain. Jun 2010;133(Pt 6):1747-54. doi:10.1093/b rain/awq079

87. Marin C, Vilas D, Langdon C, et al. Olfactory Dysfunction in Neurodegenerative Diseases. Curr Allergy Asthma Rep. Jun 15 2018;18(8):42. doi:10.1007/s11882-018-0796-4

88. Purja S, Oh S, Kim E. A Systematic Review on Neurological Aspects of COVID-19: Exploring the Relationship Between COVID-19-Related Olfactory Dysfunction and Neuroinvasion. Front Neurol. 2022;13:887164. doi:10.3389/fneur.2022.887164

89. Turetsky BI, Hahn CG, Arnold SE, Moberg PJ. Olfactory receptor neuron dysfunction in schizophrenia. Neuropsychopharmacology. Feb 2009;34(3):767-74. doi:10.1038/npp.2008.139

90. Lessa MA, Cotta-Pereira SM, Ferreira FA, et al. Usefulness of a Quantitative Olfactory Test for the Detection of COVID-19. Journal of Biotechnology and Biomedicine. 2024;7:329-337. doi:10.26502/j bb.2642-91280156