Synergistic Targeting of Krüppel-like factor and r Related Signaling Pathways by Metadichol: A Multidimensional Anticancer Strategy

Main Article Content

Palayakotai R Raghavan

Abstract

Metadichol, a nanoemulsion of long-chain lipid alcohols, demonstrates a unique capacity to modulate the expression of the entire (KLF) transcription factor family (KLF1–KLF18) in human peripheral blood mononuclear cells (PBMCs) in a concentration-dependent manner. Using qRT-PCR and Western blot techniques, at 1 ng/ml, Metadichol downregulated 14 of 18 KLFs while selectively upregulating KLF4, KLF15, KLF17, and KLF18—factors often implicated in tumor suppression or context-dependent cancer regulation. Lower and higher concentrations produced distinct, biphasic expression patterns, indicating complex dose-dependent regulatory mechanisms. Beyond the KLF family, previous work has shown that metadichol influences interconnected signaling networks involving nuclear receptors, sirtuins, Toll-like receptors, circadian genes, and key tumor suppressors such as TP53 and Klotho. Network analysis suggests that this broad-spectrum modulation may overcome compensatory mechanisms within cancer cells, offering synergistic antitumor effects. The scope of this paper is to comprehensively analyze Metadichol and its dose-dependent regulation of KLFs and related pathways, while the purpose is to establish Metadichol as a multitarget anticancer agent capable of overcoming compensatory mechanisms in cancer cells, with potential applications in other diseases driven by transcriptional dysregulation. By simultaneously targeting multiple pathways, Metadichol offers a novel integrative approach to enhance therapeutic efficacy compared to single-pathway interventions.

Keywords: Metadichol KLF, Toll-like receptors, nuclear receptors, sirtuins, circadian genes, Klotho, TP53, FOXO1, PPARGC1A, telomerase, long-chain lipid alcohols

Article Details

How to Cite
RAGHAVAN, Palayakotai R. Synergistic Targeting of Krüppel-like factor and r Related Signaling Pathways by Metadichol: A Multidimensional Anticancer Strategy. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6583>. Date accessed: 17 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6583.
Section
Research Articles

References

1. Yuce K, Ozkan AI. The Krüppel-like factor (KLF) family, diseases, and physiological events. Gene. 2024;895:148027. doi:10.1016/j.gene.2023.148027

2. Swamynathan SK. Krüppel-like factors: three fingers in control. Hum Genomics. 2010;4(4):263-270. doi:10.1186/1479-7364-4-4-263

3. Black AR, Black JD, Azizkhan-Clifford J. Sp1 and Krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 2001;188(2):143-160. doi:10.1002/jcp.1111

4. Alder JK, Georgantas RW III, Hildreth RL, et al. Krüppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol. 2008;180(8):5645-5652. doi:10.4049/jimmunol.180.8.5645

5. Mao A, Zhou X, Liu Y, Ding J, Miao A, Pan G. KLF8 is associated with poor prognosis and regulates glycolysis by targeting GLUT4 in gastric cancer. J Cell Mol Med. 2019;23(8):5087-5097. doi:10.1111/jcmm.14378

6. Sebzda E, Zou Z, Lee JS, Wang T, Kahn ML. Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. Nat Immunol. 2008;9(3):292-300. doi:10.1038/ni1565

7. Papadakis KA, Krempski J, Svingen P, et al. Krüppel-like factor KLF10 deficiency predisposes to colitis through colonic macrophage dysregulation. Am J Physiol Gastrointest Liver Physiol. 2015; 309(11):G900-G909. doi:10.1152/ajpgi.00309.2015

8. Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol. 2017;312(2):F259-F265. doi:10.1152/ajprenal.00550.2016

9. Papadakis K, Krempski J. Krüppel-like factor KLF10 regulates intestinal macrophages and innate immune colitis. Inflamm Bowel Dis. 2014;20(suppl 1):S106. doi:10.1097/01.MIB.0000456963.59724.80

10. Dabravolski SA, Sukhorukov VN, Kalmykov VA, Grechko AV, Shakhpazyan NK, Orekhov AN. The role of KLF2 in the regulation of atherosclerosis development and potential use of KLF2-targeted therapy. Biomedicines. 2022;10(2):254. doi:10.3390/biomedicines10020254

11. Sathanoori R, Rosi F, Gu BJ, et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal. 2015;11(1):139-153. doi:10.1007/s11302-014-9442-3

12. Liu C, Shen M, Tan WLW, et al. Statins improve endothelial function via suppression of epigenetic-driven EndMT. Nat Cardiovasc Res. 2023;2:467-485. doi:10.1038/s44161-023-00267-1

13. Tugal D, Jain MK, Simon DI. Endothelial KLF4: crippling vascular injury? J Am Heart Assoc. 2014;3(1):e000769. doi:10.1161/JAHA.113.000769

14. Heard ME, Velarde MC, Giudice LC, Simmen FA, Simmen RCM. Krüppel-like factor 13 deficiency in uterine endometrial cells contributes to defective steroid hormone receptor signaling but not lesion establishment in a mouse model of endometriosis. Biol Reprod. 2015;92(6):140. doi:10.1095/biolreprod.115.130260

15. Heard ME, Simmons CD, Simmen FA, Simmen RC. Krüppel-like factor 9 deficiency in uterine endometrial cells promotes ectopic lesion establishment associated with activated notch and hedgehog signaling in a mouse model of endometriosis. Endocrinology. 2014;155(4):1532-1546. doi:10.1210/en.2013-1947

16. Homeister AW, Patterson C. Zinc fingers in the pizza pie. Circ Res. 2008;103(7):665-667. doi:10.1161/CIRCRESAHA.108.185763

17. Yang Y, Goldstein BG, Chao HH, Katz JP. KLF4 and KLF5 regulate proliferation, apoptosis, and invasion in esophageal cancer cells. Cancer Biol Ther. 2005;4(11):1216-1221. doi:10.4161/cbt.4.11.2090

18. Brown AR, Simmen R, Simmen F. Suppression of insulin-induced fatty acid synthase gene expression and colon cancer cell proliferation by members of the Krüppel-like family of transcription factors. Cancer Prev Res. 2011;4(10 Suppl):A44.

19. Bieker JJ. Krüppel-like factors: three fingers in many pies. J Biol Chem. 2001;276(37):34355-34358. doi:10.1074/jbc.R100043200

20. Pang CJ, Lemsaddek W, Alhashem YN, et al. Krüppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis. Mol Cell Biol. 2012;32(13):2628-2644. doi:10.1128/MCB.00104-12

21. Kalra IS, Alam MM, Choudhary PK, Pace BS. Krüppel-like factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol. 2011; 154(2):248-259. doi:10.1111/j.1365-2141.2011.08710.x

22. Vinci M, Greco D, Treccarichi S, et al. Bioinformatic evaluation of KLF13 genetic variant: implications for neurodevelopmental and psychiatric symptoms. Genes. 2024;15(8):1056. doi:10.3390/genes15081056

23. Shaverdashvili K, Padlo J, Weinblatt D, et al. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One. 2019;14(4): e0215746. doi:10.1371/journal.pone.0215746

24. Jiang Z, Yu T, Fan Z, Yang H, Lin X. Krüppel-like factor 7 is a marker of aggressive gastric cancer and poor prognosis. Cell Physiol Biochem. 2017;43(3):1090-1099. doi:10.1159/000481748

25. Raghavan PR, inventor. US patent 8,722,093. May 13, 2014.

26. Raghavan PR, inventor. US patent 9,006,292. April 14, 2015.

27. Raghavan PR. Metadichol®-induced expression of sirtuins 1-7 in somatic and cancer cells. Med Res Arch. 2024;12(6). doi:10.18103/mra.v12i6.5371

28. Raghavan PR. Metadichol-induced expression of toll receptor family members in peripheral blood mononuclear cells. Med Res Arch. 2024; 12(8). doi:10.18103/mra.v12i8.5610

29. Raghavan PR. Metadichol®: a nano lipid emulsion that expresses all 49 nuclear receptors in stem and somatic cells. Arch Clin Biomed Res. 2023;7:524-536. doi:10.26502/acbr.50170368

30. Raghavan PR. Metadichol, a natural ligand for the expression of Yamanaka reprogramming factors in human cardiac, fibroblast, and cancer cell lines. Med Res Arch. 2024;12(6). doi:10.18103/mra.v12i6

31. Raghavan PR. Metadichol®-induced expression of circadian clock transcription factors in human fibroblasts. Med Res Arch. 2024;12(6). doi:10.18103/mra.v12i6.5371

32. Raghavan PR. Metadichol-induced KLF expression in PBMC cells links SIRTs, NRs, TLRs, and circadian genes: a systems-wide biology approach. Preprints. 2025:2025020271. doi:10.20944/preprints202502.0271.v1

33. Tetreault MP, Wang ML, Yang Y, et al. Klf4 overexpression activates epithelial cytokines and inflammation-mediated esophageal squamous cell cancer in mice. Gastroenterology. 2010;139(6): 2124-2134.e9. doi:10.1053/j.gastro.2010.08.048

34. Tarapore RS, Yang Y, Katz JP. Restoring KLF5 in esophageal squamous cell cancer cells activates the JNK pathway leading to apoptosis and reduced cell survival. Neoplasia. 2013;15(5):472-480. doi:10.1593/neo.122126

35. Lahiri SK, Zhao J. Krüppel-like factor 8 emerges as an important regulator of cancer. Am J Transl Res. 2012;4(3):357-363.

36. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381. doi:10.1152/physrev.00058.2009

37. Yang Y, Katz JP. Krüppel-like factors in the biology of cancer. In: Nagai RF, Friedman SL, Kasuga M, eds. The Biology of Krüppel-like Factors. Springer; 2009:67-82.

38. Tetreault MP, Yang Y, Katz J. Krüppel-like factors in cancer. Nat Rev Cancer. 2013;13:701-713. doi:10.1038/nrc3582

39. Zhang Y, Yao C, Ju Z, et al. Krüppel-like factors in tumors: key regulators and therapeutic avenues. Front Oncol. 2023;13:1080720. doi:10.3389/fonc.2023.1080720

40. Rascio F, Spadaccino F, Rocchetti MT, et al. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance. Cancers (Basel). 2021;13(16):3949. doi:10.3390/cancers13163949

41. Zhu B, Liu Q, Han Q, Zeng B, Chen J, Xiao Q. Downregulation of Krüppel-like factor 1 inhibits the metastasis and invasion of cervical cancer cells. Mol Med Rep. 2018;18(4):3932-3940. doi:10.3892/mmr.2018.9401

42. Xu R, Chen Y, Wei S, Chen J. Comprehensive pan-cancer analysis of the prognostic role of KLF transcription factor 2 (KLF2) in human tumors. Onco Targets Ther. 2024;17:887-904. doi:10.2147/OTT.S476179

43. Zhu J, Teng H, Zhu X, Yuan J, Zhang Q, Zou Y. Pancancer analysis of Krüppel-like factor 3 and its carcinogenesis in pancreatic cancer. Front Immunol. 2023;14:1167018. doi:10.3389/fimmu.2023.1167018

44. He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023;9:118. doi:10.1038/s41420-023-01416-y

45. Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci. 2021;112(6):2097-2117. doi:10.1111/cas.14910

46. DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat. 2009;12(1-2):1-7. doi:10.1016/j.drup.2008.11.001

47. Li Z, Liu Q. The oncogenic role of KLF7 in colon adenocarcinoma and therapeutic perspectives. Int J Genomics. 2023;2023:5520926. doi:10.1155/2023/5520926

48. Lahiri SK, Zhao J. Krüppel-like factor 8 emerges as an important regulator of cancer. Am J Transl Res. 2012;4(3):357-363.

49. Ying M, Sang Y, Li Y, et al. Krüppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells. 2011;29(1):20-31. doi:10.1002/stem.561

50. Memon A, Lee WK. KLF10 as a tumor suppressor gene and its TGF-β signaling. Cancers (Basel). 2018;10(6):161. doi:10.3390/cancers10060161

51. Xi Z, Zhang R, Zhang F, Ma S, Feng T. KLF11 expression predicts poor prognosis in glioma patients. Int J Gen Med. 2021;14:2923-2929. doi:10.2147/IJGM.S307784

52. Li Y, Li S, Shi X, et al. KLF12 promotes the proliferation of breast cancer cells by reducing the transcription of p21 in a p53-dependent and p53-independent manner. Cell Death Dis. 2023;14:313. doi:10.1038/s41419-023-05824-x

53. Chen CC, Xie XM, Zhao XK, Zuo S, Li HY. Krüppel-like factor 13 promotes HCC progression by transcriptional regulation of HMGCS1-mediated cholesterol synthesis. J Clin Transl Hepatol. 2022;10(6):1125-1137. doi:10.14218/JCTH.2021.00370

54. Wang X, Qu X, Liu X, et al. KLF14 inhibits tumor progression via FOSL1 in glioma. Biochem Biophys Rep. 2024;41:101885. doi:10.1016/j.bbrep.2024.101885

55. Kanyomse Q, Le X, Tang J, et al. KLF15 suppresses tumor growth and metastasis in triple-negative breast cancer by downregulating CCL2 and CCL7. Sci Rep. 2022;12:19026. doi:10.1038/s41598-022-23750-4

56. Ma P, Sun CQ, Wang YF, et al. KLF16 promotes proliferation in gastric cancer cells by regulating p21 and CDK4. Am J Transl Res. 2017;9(6):3027-3036.

57. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381. doi:10.1152/physrev.00058.2009

58. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835-839. doi:10.1016/0092-8674(95)90199-x

59. Gray S, Feinberg MW, Hull S, et al. Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab. 2007;5(4):305-312. doi:10.1016/j.cmet.2007.03.002

60. Oishi Y, Manabe I, Tobe K, et al. SUMOylation of Krüppel-like factor 5 regulates PPARδ transactivation. J Biol Chem. 2008;283(5):2648-2655. doi:10.1074/jbc.M708089200

61. Chen J, Zhang Z, Li Y, et al. Glucocorticoid receptor-mediated regulation of KLF9 and KLF15 in the brain. Endocrinology. 2017;158(10):3511-3522. doi:10.1210/en.2017-00339

62. de Assis LVM, Isoldi MC, de Albuquerque Lima Ribeiro R, et al. KLF14 potentiates oxidative adaptation by modulating SIRT1 pathway. J Mol Endocrinol. 2018;61(3):121-132. doi:10.1530/JME-18-0063

63. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-295. doi:10.1146/annurev.pathol.4.110807.092250

64. Zhang J, Wang Y, Wu Y, et al. KLF10 promotes SIRT6 to suppress pancreatic cancer via NF-κB signaling. Cell Death Dis. 2020;11(5):347. doi:10.1038/s41419-020-2557-6

65. Evans PM, Liu C. KLF4 interacts with the histone acetyltransferase p300 and this interaction is important for KLF4-mediated transactivation. Cancer Res. 2006;66(8 Suppl):410-411.

66. Liu J, Zhang H, Li X, et al. KLF4 regulates NF-κB signaling in macrophages. J Immunol. 2015; 194(6):2744-2752. doi:10.4049/jimmunol.1401948

67. Mahabeleshwar GH, Kawanami D, Sharma N, et al. KLF2 regulates macrophage activation in sepsis. J Biol Chem. 2011;286(42):36535-36544. doi:10.1074/jbc.M111.248427

68. Kim Y, Ratziu V, Choi SG, et al. KLF6 regulates TGF-β1 expression in vascular injury. Circ Res. 2008;102(8):961-969. doi:10.1161/CIRCRESAHA.107.164320

69. Jeyaraj D, Scheer FA, Ripperger JA, et al. KLF9 is a CLOCK-dependent transcription factor in keratinocytes. J Biol Chem. 2012;287(15):12005-12015. doi:10.1074/jbc.M111.331462

70. Jeyaraj D, Haldar SM, Wan X, et al. KLF15 regulates circadian metabolic gene expression. Cell Metab. 2012;15(3):339-351. doi:10.1016/j.cmet.2012.02.004

71. Chen J, Zhang Z, Li Y, et al. Glucocorticoid receptor-mediated regulation of KLF9 and KLF15 in the brain. Endocrinology. 2017;158(10):3511-3522. doi:10.1210/en.2017-00339

72. Zhang Z, Teng CT, Zhang X, et al. Acetylation of KLF4 regulates its transcriptional activity. Mol Cell. 2014;53(3):392-403. doi:10.1016/j.molcel.2013.12.015

73. Zhang X, Matheny CJ, Seo S, et al. Phosphorylation of KLF11 enhances its repressor activity. Biochem J. 2013;449(1):159-166. doi:10.1042/BJ20121137

74. Du JX, Bialkowska AB, McConnell BB, Yang VW. SUMOylation regulates nuclear localization of Krüppel-like factor 5. J Biol Chem. 2008;283(46): 31991-32002. doi:10.1074/jbc.M803612200

75. Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. doi:10.1093/nar/gkac1000

76. Aleman C, Mas R, Hernandez C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Let. 1994;70:77-87.

77. Alemán CL, Ferreiro RM, Puig MN, Guerra IR, Ortega CH, Capote A. Carcinogenicity of policosanol in Sprague Dawley rats: a 24-month study. Teratog Carcinog Mutagen. 1994;14:239-249.

78. Alemán CL, Puig MN, Elias EC, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33:573-578.