A Review of Pharmaceutical Powder Crystallography – Process, Results, and Applications
Main Article Content
Abstract
In the absence of single crystals, powder diffraction data (especially synchrotron data) can provide a means of determining the crystal structure of an active pharmaceutical ingredient. The process of solving and refining a crystal structure using powder data is summarized, and suggestions for overcoming challenges are given for the various steps. Indexing can often be a bottleneck. Measures of the quality of a Rietveld refinement - including statistical, graphical, and chemical reasonableness (particularly the root-mean-square displacement between a Rietveld-refined and a DFT-optimized structure) - are described, and examples are given of what to expect, based on a large number of structures determined using synchrotron powder diffraction data. Recent crystal structures of important and/or interesting molecules are reviewed. Examples illustrating the accuracy which can be achieved, interesting features of the process of structure solution, the distinction between salts and co-crystals, and phase transitions are also reviewed.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Groom CR, Bruno IJ, Lightfoot MP, Ward, SC. The Cambridge Structural Database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2016; 72: 171-179.
3. Boldyreva EV, Ivashevskaya SN, Sowa H, Ahsbahs H, Weber H-P. Effect of hydrostatic pressure on the γ-polymorph of glycine. 1. A polymorphic transition into a new δ-form. Z. Krist. Cryst. Mater. 2005; 220: 50-57.
4. Kabekkodu S, Dosen A, Blanton TN. PDF-5+: a comprehensive powder diffraction file™ for materials characterization. Powder Diffraction 2004; 39: 47-59.
5. Madsen, I C, Scarlett NVY, Kleeberg R, Knorr K. 2019. Quantitative phase analysis. 2019. Chapter 3.9 in International Tables for Crystallography Volume H: Powder Diffraction, 344-373.
6. Baerlocher C, McCusker LB. 2002. The structure determination process. 2002. in Structure Determination from Powder Diffraction Data, edited by David WIF, Shankland K, McCusker LB, Baerlocher C, 4-7.
7. David WIF. 2019. Real-space methods for structure solution frm powder-diffraction data: application to molecular structures. 2019. Chapter 4.3 in International Tables for Crystallography Volume H: Powder Diffraction, 414-432.
8. USP. Characterization of Crystalline and Partially-Crystalline Solids by X-ray Powder Diffraction (XRPD). 2022. Section 941.
9. Le Bail A. 2019. Data reduction to ∣Fhkl∣ values. 2019. Chapter 3.5 in International Tables for Crystallography Volume H: Powder Diffraction, 282-287.
10. Rizzi R, Palatinus L, Kaduk JA. 2025. Crystal Structure Determination. , 2025. Chapter 8 in R. E. Dinnebier and S. J. L. Billinge, Powder Diffraction: Theory and Practice, 2nd edition.
11. Stephens PW. Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction. Journal of Applied Crystallography 1999; 32: 281-289.
12. Kaduk JA. 2019. Structure validation. 2019; Chapter 4.9 in International Tables for Crystallography Volume H: Powder Diffraction, 489-514.
13. van de Streek J, Neumann M. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallographica Section B 2010; 66: 544-558.
14. van de Streek J, Neumann M. Validation of moleculr crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D). Acta Crystallographica Section B 2014; 70: 1020-1032.
15. van de Streek J, Firaha D, Kaduk JA, Blanton TN. From ‘crystallographic accuracy’ to ‘thermodynamic accuracy’: a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®). Acta Crystallographica Section B 2024; 80: 682-687.
16. Hodge RL, Kaduk JA, Gindhart AM, Blanton TN. Crystal structure of atorvastatin calcium trihydrate Form I (Lipitor®), (C33H34FN2O5)2Ca(H2O)3. Powder Diffraction 2020; 35: 136-143.
17. Kaduk JA, Dosen A, Blanton TN. Crystal structure of aprocitentan Form A, C16H14Br2N6O4S. submitted to Powder Diffraction 2025.
18. Vibha K, Prachality NC, Reddy RA, Ravikantha MN, Thipperudrappa J. Computational studies on sulfonamide drug molecules by density functional theory. Chemical Physics Impact 2023; 6: 100147.
19. Whitfield PS. Structure Solution of Sulphonamides from Powder Diffraction Data - A Problematic Moiety? presented at the 18th Pharmaceutical Powder X-ray Diffraction Symposium, Cambridge UK, 8 May 2025.
20. Chalupná SM, Hušák M, Čejka J, Fňukal F, Klimeš J. Computation screening for incorrectly determined cocrystal structures. Acta Crystallographica Section B: Structural Science Crystal Engineering Materials 2025; 81: 208-216.
21. Derollez PE, Dudognon F, Affouard F, Danede F, Correia NT, Descamps M. Ab initio Structure Determination of Phase II of Racemic Ibuprofen by X-ray Powder Diffraction. Acta Crystallographica 2010; B66: 76-80; CSD Refcode IBPRAC04.
22. Whitfield PS, Smalley CJ. A Critical Examination and Re-Determination of the Literature Ibuprofen Form-II Structure. Advances in X-ray Analysis2022; 66: 85-94; CSD Refcode IBPRAC24.
23. Smalley CJS, Hoskins HE, Hughes CE, Johnstone DN, Willhammar T, Young MT, Pickard CJ, Logsdail AJ, Midgley PA, Harris KDM. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFTD calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 2022; 13: 5277-5288; CSD Refcode LTYROS14.
24. Polyzois H, Guo R, Srirambhatla VK, Warzecha M, Prasad E, Turner A, Halbert GW, Keating P, Price SL, Florence AJ. Crystal Structure and Twisted Aggregates of Oxcarbazepine Form III. Crystal Growth & Design 2022; 22: 4146-4156; CSD Refcode CANDUR03.
25. Goloveshkin AS, Korlyukov AA, Vologzhanina AV. Novel Polymorph of Favipiravir - An Antiviral Medication. Pharmaceuticals2021; 13: 139.
26. Wong SN, Low K-H, Poon YL, Zhang X, Chan HW, Chow SF. Synthesis of the first remdesivir cocrysal: design, characterization, and therapeutic potential for pulmonary delivery. International Journal of Pharmaceutics 2023; 640: 122983; CSD Refcode ZILNAN.
27. Ens TM, Kaduk JA, Rost MM, Dosen A, Blanton TN. Hydrogen bonding in the crystal structure of molnupiravir Form I, C13H19N3O7. Powder Diffraction 2025; 40: 72-75.
28. Kaduk JA, Dosen A, Blanton TN. Crystal structure of fluvoxamine maleate, (C15H22F3N2O2)(HC4H2O4). submitted to Powder Diffraction 2025.
29. Kaduk JA, Dosen A, Blanton TN. A proposed crystal structure of fruquintinib Form I, C21H19N3O5. submitted to Powder Diffraction 2025.
30. Ens TM, Kaduk JA, Rost MM, Dosen A, Blanton TN. Crystal structure of decoquinate, C24H35NO5. Powder Diffraction 2025; 40(1); 57-64.
31. Ens TM, Kaduk JA, Dosen A, Blanton TN. Crystal structure of anthraquinone-2-carboxylic acid, C15H8O4. Powder Diffraction 2024; 39: 29-35.
32. Spek AL. Structure Validation in Chemical Crystallography. Acta Crystallographica 2009; D 65: 148-155.
33. Spek AL. CheckCIF Validation Alerts: What They Mean and How To Respond. Acta Crystallographica E 2020; 76: 1-11.
34. Kaduk JA, Patel NV, Golab JT. Crystal structure of calcium L-5-methyltetrahydrofolate trihydrate Type I, C20H23N7O6Ca(H2O)3. Powder Diffraction 2023; 38: 207-214.
35. Kaduk JA, Dosen A, Blanton TN. Proposed crystal structure of cabotegravir, C19H17F2N3O5. submitted to Powder Diffraction 2025.
36. Ens TM, Kaduk JA, Rost MM, Dosen A, Blanton TN. A proposed crystal structure of delamanid, C25H25F3N4O6. submitted to Powder Diffraction 2025.
37. Kaduk JA, Gates-Rector S, Blanton TN. Crystal structure of elvitegravir Form II, C23H23ClFNO5 (H2O)0.27. Powder Diffraction 2023; 38: 53-63.
38. Lin J, Bu G, Unge J, Gonen T. Uncovering the Elusive Structures and Mechanisms of Prevalent Antidepressants. BioRchiv preprint https://doi.org/10.1101/2024.01.04.574264, posted 5 January 2024.
39. Kaduk JA, Dosen A, Blanton TN. Crystal structure of Form 2 of racemic reboxetine mesylate, (C19H24NO3)(CH3O3S). submitted to Powder Diffraction 2025.
40. Kaduk JA, Dosen A, Blanton TN. Crystal structure of palovarotene, C27H30N2O2. submitted to Powder Diffraction 2025.
41. Scherry CW, Boaz NC, Kaduk JA, Dosen A, Blanton TN. Crystal structure of ractopamine hydrochloride, C18H14NO3Cl. Powder Diffraction 2024; 39: 94-104.
42. Ens TM, Kaduk JA, Dosen A, Blanton TN. Crystal structure of danofloxacin mesylate, (C19H21FN3O3) (CH3O3S). Powder Diffraction 2023; 38: 194-200.
43. Ens TM, Kaduk JA, Dosen A, Blanton TN. Crystal structure of meglumine diatrizoate, (C7H18NO5) (C11H8I3N2O4). Powder Diffraction 2023; 38: 185-193.
44. Kaduk JA, Gates-Rector S, Blanton TN. Crystal structure of butenafine hydrochloride, C23H28NCl. Powder Diffraction 2023; 38: 30-36.
45. Kaduk JA, Dosen A, Blanton TN. Crystal structure of benserazide hydrochloride form I, C10H16N3O5Cl. Powder Diffraction 2025; 40: 65-71.
46. Kaduk JA, Rost MM, Dosen A, Blanton TN. Proposed crystal structure of lifitegrast sesquihydrate Form A, (C29H24Cl2N2O7S)2(H2O)3. Powder Diffraction 2024; 39: 275-282.
47. Kaduk JA, Rost MM, Dosen A, Blanton TN. Crystal structure of cariprazine dihydrochloride, C21H34Cl2N4OCl2. Powder Diffraction 2025; 40: 89-93.
48. Czibula L, Sebok F, Greiner I, Domany G, Csongor EA. Salts of piperazine compounds as D3/D2 antagonists. United States Patent 2011; 7,943,621 B2.
49. Kaduk JA, Dosen A, Blanton TN. Crystal structure of quizartinib hydrate, C29H32N6O4S(H2O)1/3. submitted to Powder Diffraction 2025.
50. Kaduk JA, Dosen A, Blanton TN. Proposed crystal structure of carbadox, C11H20N3O3. Powder Diffraction 2024; 39: 82-93.
51. Goloveshkin AS, Kulikova ES, Novikov RA, Vologzhanina AV, Korlyukov AA. Crystal structure of nilotinib hydrochloride monohydrate according to powder X-ray diffraction data. Journal of Structural Chemistry 2024; 65: 585-595; CSD Refcode KOQNAJ.
52. Kaduk JA, Zhong K, Gindhart AM, Blanton TN. Crystal structure of nilotinib, C28H22F3N7O. Powder Diffraction 2015; 30: 270-277.
53. Bezzon VDN, Dos Santos Caturello NAM, Dalpian GM, Ferreira FF. Crystal structure determination and DFT analysis of doxorubicin hydrochloride for controlled-release drug formulations. Journal of Molecular Structure 2023; 1294: 136412; CSD Refcode RIPJAF.
54. Voronin AP, Ramazanova AG, Churakov AV, Vologzhanina AV, Kulikova ES, Perlovich GL. Virtual Screening, Polymorphism, and Formation Thermodynamics Study of Riluzole Multicomponent Crystals with Dihydroxybenzoic Acids. Crystal Growth & Design 2024; 24: 9773-9789; CSD Refcode KUKHIL01.
55. Muthaiyan M, Fayaz FTS, Kenguva G, Prajapati AK, Dandela R, Chernyshev VV, Sanphui P. “New Multicomponent Solid Forms of the Antitumor Drug Ripretinib: The Role of Conformations in Dictating Dissolution and Photostability. Crystal Growth & Design 2024; 24: 7617-7631; CSD Refcode HOXMEQ.
56. Fayaz TKS, Chanduluru HK, Lal P, Ghosh A, Chernyshev V, Sanphui P. Structural analysis of anti-retroviral drug raltegravir and its potential impurity C: investigation of solubility and stability. CrystEngComm 2024; 26: 517-531; CSD Refcode DOKNEA.
57. Kaduk JA, Zhong K, Gindhart AM, Blanton TN. Crystal structure of raltegravir potassium, C20H20FKN6O6. Powder Diffraction 2015; 30: 263-269; CSD Refcode URAVIU.
58. Fayaz TKS, Palanisamy V, Sanphui P, Chernyshev V. Multicomponent solid forms of antibiotic cephalexin towards improved chemical stability. CrystEngComm 2023; 25: 1252-1262; CSD Refcode TEXRAT.
59. Sugden IJ, Braun DE, Bowskill DH, Adjiman CS, Pantelides CC. Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization. Crystal Growth & Design 2022; 22: 4513-4527; CSD Refcodes HEDYAU, HEDYIC, and HEDYIC01.
60. Guerain M, Derollez P, Roca-Paixāo L, Dejoie C, Correia NT, Afouard F. Structure determination of a new cocrystal of carbamazepine and DL-tartaric acid by synchrotron powder X-ray diffraction. Acta Crystallographica Section C: Structural Chemistry 2020; 76: 225-230.
61. Al Rahal O, Majumder M, Spillman MJ, van de Streek J, Shankland K. Co-Crystal Structures of Furosemide:Urea and Carbamazepine:Indomethacin Determined from Powder X-ray Diffraction Data. crystals 2020; 10: 42.
62. Martins ICB, Emmerling F. Carbamazepine Dihydroxybenzoic Acid Cocrystals: Exploring Packing Interactions and Reaction Kinetics. Crystal Growth & Design 2021; 21: 6981-6970.
63. Wong SN, Low K-H, Weng J, Chan HW, Chow SF. Expanding the solid-state landscape of dexamethasone: a specific sandwich structure in facilitating the formation of kinetically stable cocrystals from mechanochemistry. CrystEngComm 2022; 24: 5875-5879; CSD Refcode BEGKUX.
64. Raynor JW, Minor W, Chruszcz M. Dexamethasone at 119K. Acta Crystallographica Section E: Structure Reports Online 2007; 63: o2791-02793; CSD Refcode DEXMET11.
65. Varsa RB, Sanphui P, Chernyshev V. Polymorphs and isostructural cocrystals of dexamethasone: towards the improvement of aqueous solubility. CrystEngComm 2022; 24: 6045-6058; CSD Refcodes GEGKUX01 and HAYBAO01.
66. Al Rahal O, Williams PA, Hughes CE, Kariuki BM, Harris KDM. Structure Determination of Multicomponent Crystalline Phases of (S)-Ibuprofen and L-Proline from Powder X-ray Diffraction Data, Augmented by Complementary Experimental and Computational Techniques. Crystal Growth & Design 221; 21: 2498-2507.
67. Pekar KB, Lefton JB, McConville CA, Burleson J, Sethio D, Kraka E, Runčevski T. Mechanosynthesis of a Coamorphous Formulation of Creatine with Citric Acid and Humidity-Mediated Transformation into a Cocrystal. Crystal Growth & Design 2021; 21: 1297-1306.
68. Gohel SK, Palanisamy V, Sanphui P, Prakash M, Singh GP, Chernyshev V. Isostructural cocrystals of metaxolone with improved dissolution characteristics. RSC Advances 2021; 11: 30689-30700.
69. Sousa ML, Sarraguça MC, Oliveira dos Santos A, Sarraguça JMG, Lopes J, Ribeiro PRS. A new salt of clofazimine to improve leprosy treatment. Journal of Molecular Structure2020; 1214: 128226.
70. Ferreira PO, Cosmo de Almeida A, Carvalho dos Santos E, Droppa Junior R, Ferreira FF, Kogawa AC, Caires FJ. A norfloxacin-nicotinic acis cocrystal: Mechanochemical syntheses, thermal and structure characterization and solubility assays. Thermochimica Acta 2020; 694: 178782.
71. Jones ECL, Goldsmith KE, Ward MR, Bimbo LM, Oswald IDH. Exploring the thermal behaviour of the solvated structures of nifedipine. 2023. Acta Crystallographica Section B: Structural Science, Crystal Engineering, and Materials 2023; 79: 164-175; CSD Refcode HEZWES.
72. Ward MR, Taylor CR, Mulvee MT, Lampronti GI, Belebguer AM, Steed JW, Day GM, Oswald IDH. Pushing Technique Boundaries to Probe Conformational Polymorphism. Crystal Growth & Design 2023; 23: 7217-7230; CSD Refcodes BEDMIG20 and BEDMIG21.
73. Jirát J, Rohlíček J, Kaminsky J, Jirkal T, Ridvan L, Skořepová E, Zvoníček V, Dušek M, Šoóš M. Formation of ibrutinib solvates: so similar, yet so different. IUCrJ 2023; 10: 210-219.
74. Masciocchi N, Abbinate VM, Zambra M, Barreca G, Zampieri M. Thermal and Structural Characterization of Two Crystalline Polymorphs of Tafamidis Free Acid. Molecules 2022; 27: 7411; CSDRefcodes CEGDOV and CEQDOV01.
75. Ens TM, Kaduk JA, Dosen A, Blanton TN. Powder X-ray diffraction of tafamidis Form 1, C14H7Cl2NO3. Submitted to Powder Diffraction 2025.
76. Bravetti F, Bordignon S, Alig E, Eisenbeil D, Fink L, Nervi C, Gobetto R, Schmidt MU, Chierotti MR. Solid-State NMR-Driven Crystal Structure Prediction of Molecular Crystals: The Case of Mebendazole. Chemistry - A European Journal 2022; 28: e202103589; CSD Refcode SIYTED.
77. Puigjanaer C, Portell A, Blasco A, Font-Bardia M, Vallcorba O. Entrapped Transient Chloroform Solvates of Bilastine. crystals 2021; 11: 342.
78. Kons A, Mishnev A, Mukhametzyanov TA, Buzyurov AV, Lapuk SE, Berzins A. Hexamorphism of Dantrolene: Insights into the Crystal Structures, Stability, and Phase Transformations. Crystal Growth & Design 2021; 21: 1190-1201.
79. Okura R, Uchiyama H, Kadota K, Tozuka Y. Hydrogen bonding fro crystalline water mediates the hydration/dehydration of mequitazine glycolate. CrystEngComm 2021; 23: 4816-4824.
80. Okura R, Uchiyama H, Kadota K, Tozuka Y. New Salt and Cocrystal of Mequitazine: Impact of Coformer Flexibility and Hydrogen Bond Donors on Polymorphism. Crystal Growth & Design 2020; 20: 7219-7229.
81. Schlessinger C, Alig E, Schmidt MU. Crystal structure of the anticancer drug carmustine determined by X-ray powder diffraction. Powder Diffraction 2021; 36: 148-150.
82. Skořepová E, Rohlíček J, Chatziadi A, Zvoníček V, Jirát J, Čejka J, Ridvan L, Šoóš M. Low-temperature polymorphs of lacosamide. Journal of Crystal Growth 2021; 562: 126085.
83. Putra OD, Pettersen A, Yonemochi E, Uekusa H. Structural origin of physicochemical properties differences upon dehydration and polymorphic transformation of ciprofloxacin hydrochloride revealed by structure determination from powder X-ray diffraction data. CrystEngComm 2020; 22: 7272-7279.
84. Shemchuk O, D’Agostino S, Fiore C, Sambri V, Zannoli S, Grepioni F, Braga D. Natural Antimicrobials Meet a Synthetic Antibiotic: Carvacrol/Thymol and Ciprofloxacin Cocrystals as a Promising Solid-State Route to Activity Enhancement. Crystal Growth & Design 2020; 20: 6796-6803.
85. Chatziadi A, Skořepová E, Rohlíček J, Dušek M, Ridvan L, Šoóš M. Mechanochemically Induced Polymorphic Transformations of Sofosbuvir. Crystal Growth & Design 2020; 20: 139-147.
86. Hunnisett LM, Nyman J, Francia N, Abraham NS, Adjiman CS, Aitipamula S, Alkhidir T, Almehairbi M, Anelli A, Anstine DM, Anthony JE, Arnold JE, Bahrami F, Bellucci MA, Bhardwaj RM, Bier I, Bis JA, Boese AD, Bowskill DH, Bramley J, Brandenburg JG, Braun DE, Butler PWV, Cadden J, Carino S, Chan EJ, Chang C, Cheng B, Clarke SM, Coles SJ, Cooper RI, Couch R, Cuadrado R, Darden T, Day GM, Dietrich H, Ding Y, DiPasquale A, Dhokale B, Van Eijck BP, Elesgood MRJ, Firaha D, Fu W, Fukuzawa K, Glover J, Goto H, Greenwell C, Guo R, Harter J, Hellferich J, Hofmann DWM, Hoja J, Hone J, Hong R, Hutchison G, Ikabata Y, Isayev O, Ishaque O, Jain V, Jin Y, Jing A, Johnson ER, Jones I, Jovan Jose KV, Kabova EA, Keates A, Khakimov D, Konstantinopoulos S, Kuleshova LN, Li H, Lin X, List A, Liu C, Liu YM, Liu Z, Liu Z-P, Lubach JW, Marom N, Maryewski AA, Matsui H, Mattei A, Mayo RA, Melkumov JW, Moamed S, Abardeh ZM, Muddana HS, Nakayama N, Nayal KS, Neumann MA, Nikhar R, Obata S, O’Connor D, Organov AR, Okuwaki K, Otero-de-la-Roza A, Pantelides CC, Parkin S, Pickard CJ, Pilia L, Pivina T, Podeszwa R, Price AJA, Price LS, Price SL, Probert MR, Pulido A, Ramteke GR, Rehman AU, Reutzel-Edens SM, Rogal J, Ross AJ, Rumson AF, Sadiq G, Saeed ZM, Salimi A, Salvalaglio M, Sanders de Almada L, Sasikumar K, Sekharan S, Shang C, Shankland K, Shinohara K, Shi B, Shi X, Skillman AG, Song H, Strasser N, van de Streek J, Sugden IJ, Sun G, Szalewicz K, Tan BI, Tan L, Tarczynski F, Taylor CR, Tkatchenko A, Tom R, Tuckerman ME, Utsumi Y, Vogt-Maranto L, Weatherston J, Wilkinson LJ, Willacy RD, Wojtas L, Woollam GR, Yang Z, Yonemochi E, Yue X, Zeng Q, Zhang Y, Zhou T, Zhou Y, Zubatyuk R, Cole JC. The seventh blind test of crystal structure prediction: structure generation methods. Acta Crystallographica Section B: Structural Science Crystal Engineering Materials 2024; 80: 517-547.
87. Hunnisett LM, Francia N, Nyman J, Abraham NS, Aitipamula S, Alkhidir T, Almehairbi M, Anelli A, Anstine DM, Anthony JE, Arnold JE, Bahrami F, Bellucci MA, Beram GJO, Bhardwaj RM, Bianco R, Bis JA, Boese AD, Bramley J, Braun DE, Butler PWV, Cadden J, Carino S, Červinka C, Chan EJ, Chang C, Clarke SM, Coles SJ, Cook CJ, Cooper RI, Darden T, Day GM, Deng W, Dietrich H, DiPasquale A, Dhokale B, Van Eijck BP, Elesgood MRJ, Firaha D, FuW, Fukuzawa K, Galanakis N, Goto H, Greenwell C, Guo R, Harter J, Hellferich J, Hoja J, Hone J, Hong R, Hušák M, Ikabata Y, Isayev O, Ishaque O, Jain V, Jin Y, Jing A, Johnson ER, Jones I, Jovan Jose KV, Kabova EA, Keates A, Kelly PF, Klimeš J, Kostkova V, Li H, Lin X, List A, Liu C, Liu YM, Liu Z, Lončarič I, Lubach JW, Ludik J, Marom N, Matsui H, Mattei A, Mayo RA, Melkumov JW, Mladineo B, Moamed S, Abardeh ZM, Muddana HS, Nakayama N, Nayal KS, Neumann MA, Nikhar R, Obata S, O’Connor D, Organov AR, Okuwaki K, Otero-de-la-Roza A, Parkin S, Parunov A, Podeszwa R, Price AJA, Price LS, Price SL, Probert MR, Pulido A, Ramteke GR, Rehman AU, Reutzel-Edens SM, Rogal J, Ross AJ, Rumson AF, Sadiq G, Saeed ZM, Salimi A, Sasikumar K, Sekharan S, Shankland K, Shi B, Shi X, Shinohara K, Skillman AG, Song H, Strasser N, van de Streek J, Sugden IJ, Sun G, Szalewicz K, Tan L, Tang K, Tarczynski F, Taylor CR, Tkatchenko A, Tom R, Touš P, Tuckerman ME, Unuzeta PA, Utsumi Y, Vogt-Maranto L, Weatherston J, Wilkinson LJ, Willacy RD, Wojtas L, Woollam GR, Yang Y, Yang Z, Yonemochi E, Yue X, Zeng Q, Zhou T, Zhou Y, Zubatyuk R, Cole JC. The seventh blind test of crystal structure prediction: structure ranking methods. Acta Crystallographica Section B: Structural Science Crystal Engineering Materials 2024; 80: 548-574.
88. Das PP, Andrusenko I, Mugnaioli E, Kaduk JA, Nicolopoulos S, Gemmi M, Boaz NC, Gindhart AM, Blanton TN. Crystal structure of linagliptin hemihydrate hemiethanolate, (C25H28N8O2)2(H2O) (C2H5OH) from 3D electron diffraction data, Rietveld refinement, and density functional optimization. Crystal Growth & Design 2021; 21: 2019-2027.