Metadichol Orchestrate Pluripotency via Nuclear Receptors during Cellular Reprogramming

Main Article Content

Palayakotai R Raghavan

Abstract

Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the gene expression required for cellular reprogramming and pluripotency. This study examined the role of metadichol, a nanoemulsion of long-chain lipid alcohols (C26--C30), in modulating NR expression to increase the reprogramming of induced pluripotent stem cells (iPSCs). Using a nonviral method with metadichol at concentrations ranging from 1 pg/mL to 100 ng/mL, seven cell lines were evaluated, including human mesenchymal stem cells (HMSCs), normal human dermal fibroblasts (NHDFs), HEK293 cells, HeLa cells, THP-1 cells, triple-negative breast cancer cells, and primary prostate cancer cells. To assess the expression of 49 NRs, including estrogen-related receptor beta (NR3B2), nuclear receptor subfamily group A member 2 (NR5A2), and nuclear receptor subfamily 5 group member 1 (NR5A1), which can replace Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) during iPSC generation, quantitative real-time polymerase chain reaction and western blot analyses were employed. Normal human dermal fibroblasts (NHDFs) and human mesenchymal stem cells strongly upregulated NR5A1 and NR5A2, which supported Oct4 replacement, and ERRβ, which facilitated Klf4 substitution. This upregulation made them highly suitable for NR-mediated reprogramming. Metadichol also induced the expression of pluripotency markers (e.g., alkaline phosphatase and Yamanaka factors), sirtuins, Fox head box protein O1 (FOXO1), Klotho, telomerase transcriptase (TERT) and insulin/beta cell formation, which suggests enhanced epigenetic remodeling and cell survival. This nonviral, scalable approach positions metadichol as a promising reagent for induced pluripotent stem cell (iPSC) differentiation in regenerative medicine, particularly for diabetes and oncology. These results suggest that metadichol could act as a universal nuclear receptor ligand, suggesting a comprehensive approach for efficient and safe induced pluripotent stem cell (iPSC) reprogramming.

Keywords: Nuclear receptors, stem cell, IPSC, fibroblasts, cell reprogramming, metadichol, sirtuins, FOXO1, TERT, Klotho, vitamin C, Pgc1A, nanoemulsion, long-chain alcohols

Article Details

How to Cite
RAGHAVAN, Palayakotai R. Metadichol Orchestrate Pluripotency via Nuclear Receptors during Cellular Reprogramming. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6603>. Date accessed: 15 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6603.
Section
Research Articles

References

1. Antebi A. Nuclear receptor signal transduction in C. elegans. WormBook. 2015:1-49. doi:10.1895/wormbook.1.64.2
2. Jeong Y, Mangelsdorf DJ. Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med. 2009;41(8):525-537. doi:10.3858/emm.2009.41.8.091
3. Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The orphan nuclear receptors steroidogenic factor-1 and liver receptor homolog-1: structure, regulation, and essential roles in mammalian reproduction. Physiol Rev. 2019;99(2):1249-1279. doi:10.1152/physrev.00019.2018
4. Wang L, Nanayakkara G, Yang Q, et al. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol. 2017;10(1):168. doi:10.1186/s13045-017-0526-8
5. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024
6. Contreras-Jurado C, Montero-Pedrazuela A, Pérez RF, Alemany S, Fraga MF, Aranda A. The thyroid hormone enhances mouse embryonic fibroblasts reprogramming to pluripotent stem cells: role of the nuclear receptor corepressor 1. Front Endocrinol (Lausanne). 2023;14:1235614. doi:10.3389/fendo.2023.1235614
7. Baksh SS, Hu J, Pratt RE, Dzau VJ, Hodgkinson CP. The rig1 receptor plays a critical role in cardiac reprogramming via YY1 signaling. Am J Physiol Cell Physiol. 2023;324(4):C843-C855. doi:10.1152/ajpcell.00402.2022
8. Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Izpisua Belmonte JC. Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol. 2013;5(5):354-355. doi:10.1093/jmcb/mjt034
9. Heng JC, Orlov YL, Ng HH. Transcription factors for the modulation of pluripotency and reprogramming. Cold Spring Harb Symp Quant Biol. 2010;75:237-244. doi:10.1101/sqb.2010.75.003
10. Mullen EM, Gu P, Cooney AJ. Nuclear receptors in regulation of mouse ES cell pluripotency and differentiation. PPAR Res. 2007;2007:061563. doi:10.1155/2007/61563
11. Fleischmann G, Horn PA. Pluripotency and reprogramming: meeting report on the Fifth International Meeting of the stem cell network North Rhine Westphalia. Cloning Stem Cells. 2009;11(4):473-475. doi:10.1089/clo.2009.0059
12. Gu P, Goodwin B, Chung AC, et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol. 2005;25(9):3492-3505. doi:10.1128/MCB.25.9.3492-3505.2005
13. Percharde M, Lavial F, Ng JH, et al. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev. 2012;26(20):2286-2298. doi:10.1101/gad.195545.112
14. Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett. 2018;592(6):852-877. doi:10.1002/1873-3468.12826
15. Okumura LM, Lesch BJ, Page DC. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells. PLoS One. 2013;8(6):e66062. doi:10.1371/journal.pone.0066062
16. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996;10(10):1167-1177. doi:10.1210/mend.10.10.9121485
17. Festuccia N, Owens N, Chervova A, Dubois A, Navarro P. The combined action of Esrrb and Nr5a2 is essential for murine naïve pluripotency. Development. 2021;148(17):dev199604. doi:10.1242/dev.199604
18. Mbalaviele G, Abu-Amer Y, Meng A, et al. Activation of peroxisome proliferator-activated receptor-γ pathway inhibits osteoclast differentiation. J Biol Chem. 2000;275(19):14388-14393. doi:10.1074/jbc.275.19.14388
19. Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol. 2024;12:1357968. doi:10.3389/fcell.2024.1357968
20. Uranishi K, Akagi T, Sun C, Koide H, Yokota T. Dax1 associates with Esrrb and regulates its function in embryonic stem cells. Mol Cell Biol. 2013;33(10):2056-2066. doi:10.1128/MCB.01520-12
21. Feng B, Jiang J, Kraus P, et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol. 2009;11(2):197-203. doi:10.1038/ncb1827
22. Zhou G, Meng S, Li Y, Ghebre YT, Cooke JP. Optimal ROS signaling is critical for nuclear reprogramming. Cell Rep. 2016;15(5):919-925. doi:10.1016/j.celrep.2016.03.084
23. Percharde M, Azuara V. Essential roles for the nuclear receptor coactivator Ncoa3 in pluripotency. Cell Cycle. 2013;12(2):195-196. doi:10.4161/cc.23377
24. Raghavan PR. Policosanol nano. US patent 8,722,093. May 13, 2014.
25. Raghavan PR. Policosanol nano. US patent 9,034,383. May 19, 2015.
26. Raghavan PR. Policosanol nano. US patent 9,006,292. April 14, 2015.
27. Xie CQ, Jeong Y, Fu M, et al. Expression profiling of nuclear receptors in human and mouse embryonic stem cells. Mol Endocrinol. 2009;23(5):724-733. doi:10.1210/me.2008-0465
28. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20(4):207-220. doi:10.1038/s41576-018-0089-8
29. Hong SH, Nah HY, Lee YJ, et al. Expression of estrogen receptor-α and -β, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol Cells. 2004;18(3):320-325.
30. Raghavan PR. Metadichol®: a nano lipid emulsion that expresses all 49 nuclear receptors in stem and somatic cells. Arch Clin Biomed Res. 2023;7(4):524-536. doi:10.26502/acbr.50170368
31. Raghavan PR. Metadichol is a natural ligand for the expression of Yamanaka reprogramming factors in human cardiac, fibroblast, and cancer cell lines. Med Res Arch. 2024;12(6):5323. doi:10.18103/MRA.v12i6.5323
32. Raghavan PR. Metadichol®-induced expression of Sirtuins 1-7 in somatic and cancer cells. Med Res Arch. 2024;12(6):5371. doi:10.18103/MRA.v12i6.5371
33. Raghavan PR. Metadichol-induced differentiation of pancreatic ductal cells (PANC-1) into insulin-producing cells. Med Res Arch. 2023;11(11):4654. doi:10.18103/MRA.v11i11.4654
34. Raghavan PR. The quest for immortality: introducing Metadichol®, a novel telomerase activator. J Stem Cell Res Ther. 2019;9(446):2. doi:10.4172/2157-7633.1000446
35. Raghavan PR. Metadichol®, a novel agonist of the anti-aging Klotho gene in cancer cell lines. J Cancer Sci Ther. 2018;10(11):351-357. doi:10.4172/1948-5956.1000566
36. Raghavan PR. Metadichol®, vitamin C and GULO gene expression in mouse adipocytes. Biol Med (Aligarh). 2018;10(426):2. doi:10.4172/0974-8369.1000426
37. Raghavan PR. Metadichol® induced high levels of vitamin C: case studies. Vitam Miner. 2017;6(169):4. doi:10.4172/2376-1318.1000169
38. Raghavan PR. Metadichol® and vitamin C increase in vivo, an open-label study. Vitam Miner. 2017;6(4):1000169. doi:10.4172/2376-1318.1000163
39. Raghavan PR. Metadichol®. A novel inverse agonist of aryl hydrocarbon receptor (AHR) and NRF2 inhibitor. J Cancer Sci Ther. 2017;9(9):661-668. doi:10.4172/1948-5956.1000489
40. Raghavan PR. Metadichol, a novel ROR gamma inverse agonist, and its applications in psoriasis. J Clin Exp Dermatol Res. 2017;8(6):433. doi:10.4172/2155-9554.1000433
41. Raghavan PR. Metadichol®: a novel inverse agonist of thyroid receptor and its applications in thyroid diseases. Biol Med (Aligarh). 2019;11(458):2. doi:10.4172/0974-8369.1000458
42. Alemán CL, Más R, Noa M, et al. Carcinogenicity of policosanol in Sprague Dawley rats: a 24-month study. Teratog Carcinog Mutagen. 1994;14(5):239-249. doi:10.1002/tcm.1770140505
43. Alemán CL, Más R, Noa M, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573-578. doi:10.1016/0278-6915(95)00024-8
44. Alemán CL, Más R, Noa M, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87. doi:10.1016/0378-4274(94)90147-3
45. Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extranuclear actions. Mol Cell Endocrinol. 2003;213(1):1-11. doi:10.1016/j.mce.2003.10.033
46. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77(1):289-312. doi:10.1146/annurev.biochem.77.061307.091829
47. Parker KL, Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev. 1997;18(3):361-377. doi:10.1210/edrv.18.3.0301
48. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276-308. doi:10.1210/er.2002-0032
49. Deblois G, Giguère V. Estrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer. 2013;13(1):27-36. doi:10.1038/nrc3396
50. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294(5548):1866-1870. doi:10.1126/science.294.5548.1866
51. Giguère V. Orphan nuclear receptors: from gene to function. Endocr Rev. 2008;29(7):778-794. doi:10.1210/er.2008-0022
52. Timsit YE, Negishi M. CAR, and PXR: the xenobiotic-sensing receptors. Steroids. 2007;72(3):231-246. doi:10.1016/j.steroids.2006.12.006
53. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous ligands. Annu Rev Pharmacol Toxicol. 2003;43(1):309-334. doi:10.1146/annurev.pharmtox.43.100901.135828
54. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35. doi:10.1016/j.cell.2012.03.003
55. Müschen M. Highlight: self-renewal signaling in stem cells. Biol Chem. 2008;389(7):787. doi:10.1515/BC.2008.090
56. Hotta A, Ellis J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem. 2008;105(4):940-948. doi:10.1002/jcb.21912
57. Festuccia N, Owens N, Papadopoulou T, et al. Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation. Cell Stem Cell. 2018;23(4):532-544.
58. Xie CQ, Jeong Y, Fu M, et al. Expression profiling in knockouts of PPARγ and ERRγ reveals metabolic roles in stem cell differentiation. Stem Cell Reports. 2019;12(6):1256-1269. doi:10.1016/j.stemcr.2019.05.008
59. Heng JC, Feng B, Han J, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell. 2010;6(2):167-174. doi:10.1016/j.stem.2010.01.017
60. Yazawa T, Imamichi Y, Miyamoto K, Umezawa A, Taniguchi T. Expression and function of nuclear receptor NR5A1 in human induced pluripotent stem cell-derived steroidogenic cells. Endocrinology. 2016;157(10):3745-3755. doi:10.1210/en.2016-1215
61. Pei H, Yang Y, Xi J, Bai Z, Yue A. PPARγ inhibits reprogramming by activating lineage-specific genes in human pluripotent stem cells. Stem Cells. 2015;33(3):1017-1028. doi:10.1002/stem.1899
62. Barca-Mayo O, Liao XH, Alonso M, et al. Thyroid hormone receptor α and regulation of type 3 deiodinase during mouse embryonic development. Proc Natl Acad Sci U S A. 2011;108(36):14827-14832. doi:10.1073/pnas.1106754108
63. Wang W, Yang J, Liu H, et al. Retinoic acid regulates differentiation of embryonic stem cells through Rara signaling. Nature. 2011;478(7369):391-394. doi:10.1038/nature10447
64. Gudas LJ, Wagner JA. Retinoids regulate stem cell differentiation. J Cell Physiol. 2011;226(2):322-330. doi:10.1002/jcp.22475
65. Ji S, Zhou W, Li X, et al. COUP-TF1 represses Oct4 to trigger differentiation in embryonic stem cells. Stem Cell Reports. 2017;9(3):845-858. doi:10.1016/j.stemcr.2017.06.010
66. Sun C, Nakatake Y, Ura H, et al. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells. Mol Endocrinol. 2008;22(11):2472-2482. doi:10.1210/me.2007-0326
67. Lee RA, Harris CA, Wang JC. Glucocorticoid receptor regulates pluripotency and differentiation in mouse embryonic stem cells. Cell Rep. 2016;16(4):1030-1041. doi:10.1016/j.celrep.2016.06.067
68. Ma R, Liang J, Huang W, et al. Estrogen receptor beta functions in the maintenance of embryonic stem cells. Stem Cells. 2010;28(9):1547-1558. doi:10.1002/stem.495
69. Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157(1):255-266. doi:10.1016/j.cell.2014.03.012
70. Sonoda J, Pei L, Evans RM. Nuclear receptors: deciphering diversity and development. Mol Endocrinol. 2008;22(1):1-13. doi:10.1210/me.2007-0240
71. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182-195. doi:10.1016/j.jconrel.2010.01.036
72. Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 2014;35(4):2871-2882. doi:10.1007/s13277-013-1511-7
73. Görisch SM, Wachsmuth M, Tóth KF, Lichter P, Rippe K. Histone acetylation increases chromatin accessibility. J Cell Sci. 2005;118(24):5825-5834. doi:10.1242/jcs.02689
74. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317-330. doi:10.1038/nature14248
75. Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B-cell identities. Mol Cell. 2010;38(4):576-589. doi:10.1016/j.molcel.2010.05.004
76. Morohashi KI, Honda SI, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450 s. J Biol Chem. 1992;267(25):
77. Yamamoto T, Nakamura K, Yamada K, et al. NR5A1 (SF-1) expression in conventional renal cell carcinoma. Pathol Int. 2017;67(11):558-564. doi:10.1111/pin.12591
78. Zhang X, Zhang J, Wang T, et al. The role of nuclear receptor LRH-1 in human breast cancer. Gene. 2018;642:320-326. doi:10.1016/j.gene.2017.11.050
79. Talebi A, Kiaie SH, Mahdavi M, Shafiee A, Babaei E. The modulatory effect of ERRβ on stemness and differentiation in breast cancer stem cells. Cell Mol Life Sci. 2021;78(10):4709-4724. doi:10.1007/s00018-021-03832-4
80. Chen T, Dent SY. Chromatin remodelers and cancer. Oncogene. 2014;33(28):3681-3689. doi:10.1038/onc.2013.405
81. Li L, Chen T, Stanton JD, et al. The peripheral benzodiazepine receptor ligand 1-(2-chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of the aryl hydrocarbon receptor. Mol Pharmacol. 2008;74(6):1687-1695. doi:10.1124/mol.108.050633
82. Pereira FA, Qiu Y, Zhou G, et al. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev. 1999;13(8):1037-1049. doi:10.1101/gad.13.8.1037
83. Kenakin T. Principles: receptor theory in pharmacology. Trends Pharmacol Sci. 2004;25(4):186-192. doi:10.1016/j.tips.2004.02.012
84. Lonard DM, O'Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27(5):691-700. doi:10. 1016/j.molcel.2017.08.012
85. Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci. 2000;21(10):381-388. doi:10.1016/s0165-6147 (00)01548-0
86. Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995;270(52):31178-31188. doi:10.1074/jbc.270.52.31178
87. Festuccia N, Dubois A, Vandormael-Pournin S, et al. Mitochondrial function is required for secretory function and differentiation in pancreatic β-cells. Cell Metab. 2017;25(4):822-834. doi:10.1016/j.cmet.2017.02.008
88. Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the 'undruggable' cancer targets. Nat Rev Cancer. 2017;17(8):502-508. doi:10.1038/nrc.2017.36
89. Plath K, Lowry WE. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet. 2011;12(4):253-265. doi:10.1038/nrg2955
90. Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409-412. doi:10.1038/nmeth.1591
91. Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011;25(21):2227-2241. doi:10.1101/gad.176826.111
92. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273-304. doi:10.1146/annurev.biochem.77.062706.153223
93. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-395. doi:10.1038/cr.2011.22
94. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517-534. doi:10.1038/nrg.2017.33
95. Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 2015;17(6):651-662. doi:10.1016/j.stem.2015.11.012
96. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149-159. doi:10.1016/s0092-8674(01)00527-x
97. Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 2014;34(4):699-710. doi:10.1128/MCB.01337-13
98. Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development. 2017;144(5):737-754. doi:10.1242/dev.145441
99. Nie L, Cai SY, Shao JZ, Chen J. Toll-like receptors, associated biological roles, and signaling networks in nonmammals. Front Immunol. 2018;9:1523. doi:10.3389/fimmu.2018.01523
100. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27(11):1876-1892. doi:10.1002/pro.3496
101. Agriesti F, Cela O, Capitanio N. "Time is out of joint" in pluripotent stem cells: how and why. Int J Mol Sci. 2024;25(4):2063. doi:10.3390/ijms25042063
102. Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7(1):402. doi:10.1038/s41392-022-01257-8
103. Mihaylov SR, Castelli LM, Lin YH, et al. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun. 2023;14(1):5496. doi:10.1038/s41467-023-41304-8
104. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015;36(2):174-193. doi:10.1210/er.2013-1079
105. Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol. 2016;13(8):707-719. doi:10.1080/15476286.2015.1134413
106. Fu X, Wu S, Li B, Xu Y, Liu J. Functions of p53 in pluripotent stem cells. Protein Cell. 2020;11(1):71-78. doi:10.1007/s13238-019-00665-x
107. Zhang X, Yalcin S, Lee DF, et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol. 2011;13(9):1092-1099. doi:10.1038/ncb2293
108. Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the generation of mouse and human-induced pluripotent stem cells. Cell Stem Cell. 2010;6(1):71-79. doi:10.1016/j.stem.2009.12.001
109. Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci. 2014;39(4):159-169. doi:10.1016/j.tibs.2014.02.003
110. Kuro-o M. Klotho, phosphate and FGF-23 in aging and disturbed mineral metabolism. Nat Rev Nephrol. 2013;9(11):650-660. doi:10.1038/nrneph.2013.111
111. Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature aging with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472(7342):221-225. doi:10.1038/nature09879
112. Marion RM, Strati K, Li H, et al. Telomeres acquire embryonic stem cell characteristics associated with pluripotency. Cell Stem Cell. 2009;4(2):141-154. doi:10.1016/j.stem.2008.12.010
113. Park JI, Venteicher AS, Hong JY, et al. Telomerase modulates Wnt signaling by association with target gene chromatin. Nature. 2009;460(7251):66-72. doi:10.1038/nature08137
114. Young JI, Züchner S, Wang G. Regulation of the epigenome by vitamin C. Annu Rev Nutr. 2015;35:545-564. doi:10.1146/annurev-nutr-071 714-034228
115. Monfort A, Wutz A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013;14(4):337-346. doi:10.1038/embor.2013.29
116. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239-2263. doi:10.1101/gad.1963210
117. Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc. 2012;7(4):718-728. doi:10.1038/nprot.2012.012
118. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11-22. doi:10.1016/j.stem.2015.06.007
119. Zhou Q, Melton DA. Extreme makeover: converting one cell type to another. Cell Stem Cell. 2008;3(4):382-388. doi:10.1016/j.stem.2008.09.015
120. Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014;15(3):244-253. doi:10.1002/embr.201338254
121. Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499-507. doi:10.1038/ng.127
122. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295-305. doi:10.1038/nature10761
123. Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247-272. doi:10.1146/annurev-physiol-021909-135917
124. Carlson HA. Protein flexibility and drug design: how to hit a moving target. Curr Opin Chem Biol. 2002;6(4):447-452. doi:10.1016/s1367-5931(02) 00341-1
125. Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017;377(1):62-70. doi:10.1056/NEJMra1510062