Novel Protein Adjuvant Activating Innate IFN-γ and IL-18 Expression and Inducing Rejection of Implanted Colorectal Cancer Following Immunotherapy Using This Adjuvant in Mice

Main Article Content

Rajesh Mani, Ph.D. B. Mark Evers, M.D. Yasuhiro Suzuki, Ph.D.

Abstract

Our recent study demonstrated that immunizations with nonreplicable MC38 colorectal cancer cells plus a novel recombinant protein adjuvant, the amino-terminus region of dense granule protein 6 (rGRA6Nt) of Toxoplasma gondii (a protozoan parasite), effectively activate the cancer cell-specific CD8+ T cytotoxic cells and inhibit the growth of implanted tumors of the identical cancer cells after its challenge implantation. In the present study, we first examined whether rGRA6Nt activates mRNA expression for IFN-g, IL-12, IL-15, and IL-18, which are known to assist an activation of the CD8+ T cells, in innate immune cells. Following an intraperitoneal injection of rGRA6Nt (40 mg) into SCID mice deficient in both T and B cells, markedly increased levels of mRNA for only IFN-g and IL-18 were detected in their peritoneal exudate innate immune cells. When C57BL/6 mice were immunized with nonreplicable MC38 colorectal cancer cells plus rGRA6Nt adjuvant twice and challenged with replication-capable cancer cells of the identical colorectal cancer, more than one fifth (22.2%, 6/27) of the immunized mice rejected the growth of the implanted tumors, whereas none (0/27, P<0.05) of unimmunized control mice rejected the implanted tumors. These results indicate that rGRA6Nt protein adjuvant has a unique capability to selectively activate expression of IFN-g and IL-18 in innate immune cells, and that immunizations with nonreplicable cancer cells in combination with this protein adjuvant can induce a protection to reject the growth of the identical tumor cells after its challenge implantation in a significant portion of the immunized mice.

Keywords: adjuvant, cancer immunotherapy, IFN-g, IL-18, innate immunity, protective immunity, cancer rejection

Article Details

How to Cite
MANI, Rajesh; EVERS, B. Mark; SUZUKI, Yasuhiro. Novel Protein Adjuvant Activating Innate IFN-γ and IL-18 Expression and Inducing Rejection of Implanted Colorectal Cancer Following Immunotherapy Using This Adjuvant in Mice. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6615>. Date accessed: 15 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6615.
Section
Research Articles

References

1. H.J. Jackson, S. Rafiq, R.J. Brentjens, Driving CAR T-cells forward. Nat. Rev. Clin. Oncol, 2016, 13: 370-83.

2. H. Dong, G. Zhu, K. Tamada, L. Chen, B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med, 1999, 5:1365-9.

3. G.J. Freeman, A.J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L.J. Fitz, N. Malenkovich, T. Okazaki, M.C. Byrne, H.F. Horton, L. Horton, L. Fouser, L. Carter, V. Ling, M.R. Bowman, B.M. Carreno, M. Collins, C.R. Wood, T. Honjo, Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med, 2000, 192:1027-34.

4. M.F. Krummel, J.P. Allison, CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med, 1995, 182: 459-65.

5. A. Passardi, M. Canale, M. Valgiusti, P. Ulivi, Immune Checkpoints as a Target for Colorectal Cancer Treatment. Int. J. Mol. Sci, 2017, 18:1324.

6. S. P. Arora, D. Mahalingam, Immunotherapy in colorectal cancer: for the select few or all? J. Gastrointest. Oncol, 2018, 9:170-179.

7. S. Wang, J. Hao, H. Wang, Y. Fang, L. Tan, Efficacy and safety of immune checkpoint inhibitors in non-small cell lung cancer. Oncoimmunology, 2018, 7: e1457600.

8. P.N. Aguiar, Jr, R.A. De Mello, C.M.N. Barreto, L.A. Perry, J. Penny-Dimri, H. Tadokoro, G.L. Lopes, Jr, Immune checkpoint inhibitors for advanced non-small cell lung cancer: emerging sequencing for new treatment targets. ESMO Open, 2017, 2: e000200.

9. M.A. Postow, R. Sidlow, M.D. Hellmann, Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med, 2018, 378:158-168.

10. D.Y. Wang, J.E. Salem, J.V. Cohen, S. Chandra, C. Menzer, F. Ye, S. Zhao, S. Das, K.E. Beckermann, L. Ha, W.K. Rathmell, K.K. Ancell, J.M.Balko, C. Bowman, E.J. Davis, D.D. Chism, L. Horn, G.V. Long, M.S. Carlino, B. lebrun-Vignes, Z. Eroglu, J.C. Hassel, A.M. Menzies, J.A. Sosman, R.J. Sullivan, J.J. Maslehi, D.B. Johnson, Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol, 2018, 4: 1721-1728.

11. P.E. Young, C.M. Womeldorph, E.K. Johnson, J.A. Maykel, B. Brucher, A. Stojadinovik, I. Avital, A. Nissan, S.R. Steele. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: current status and challenges. J. Cancer. 2014, 5: 262-71.

12. A. Scheer, R.A. Auer. Surveillance after curative resection of colorectal cancer. Clin. Colon Rectal Surg. 2009, 22: 242-50.

13. L. Martinez-Lostao, A. Anel, J. Pardo, How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 2015, 21: 5047-56.

14. B. Farhood, M. Najafi, and K. Mortezaee. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2018, 234: 8509-21.

15. E. Sato, S.H. Oslon, J. Ahn, B. Bundy, H. Nishikawa, F. Qian, A.A. Jungbluth, D. Frosina, S. Gnjatic, C. Ambrosone, J. Kepner, T. Odunsi, G. Ritter, S. Lele, Y.T. Chen, H. Ohtani, L.J. Old, K. Odunsi. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 2005, 102: 8538-43.

16. R. Mani, C. Martin, K.E. Balu, Q. Wang, P. Rychahou, T. Izmuni, B.M. Evers, Y. Suzuki. A novel protozoa parasite-derived protein adjuvant is effective in immunization with cancer cells to activate the cancer-specific protective immunity and inhibit the cancer growth in a murine model of colorectal cancer. Cells. 2024,13: 111.

17. S.R. Roff, E.N. Noon-Song, J.K. Yamamoto. The significance of interferon-gamma in HIV-1 pathogenesis, Therapy, and Prophylaxis. Front. Immunol. 2014, 4: 498.

18. Henry, C.J.; Ornelles, D.A.; Mitchell, L.M.; Brzoza-Lewis, K.L.; Hiltbold, E.M. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol. 2008, 181: 8576-84.

19. I.A. Khan, L.H. Kasper, IL-15 augments CD8+ T cell-mediated immunity against Toxoplasma gondii infection in mice. J. Immunol. 1996, 157: 2103-8.

20. I. Okamoto, K. Kohno, T. Tanimoto, K. Iwaki, K. Ishihara, S. Akamatsu, M. Kurimoto, Development of CD8+ effector T cells is differentially regulated by IL-18 and IL-12. J. Immunol. 1999, 162: 3202-11.

21. Y. Suzuki, X. Wang, B.S. Jortner, L. Payne, Y. Ni, S.A. Michie, B. Xu, T. Kudo, S. Perkins. Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am. J. Pathol. 2010, 176: 1607-13.

22. Sa, Q., et al., Cutting Edge: IFN-gamma Produced by Brain-Resident Cells Is Crucial To Control Cerebral Infection with Toxoplasma gondii. J. Immunol. 2015, 195: 796-800.

23. J.R. Baird, K.T. Byne, P.H. Lizotte, S. Toraya-Brown, U.K. Scarlett, M.P. Alexander, M.R. Sheen, B.A. Fox, M. Bosenberg, D.W. Mullins, M.J. S. Fiering. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J. immunol. 2013, 190: 469-78.

24. A.M. Krieg, Development of TLR9 agonists for cancer therapy. J. Clin. Invest, 2007, 117: 1184-94.

25. A. Carpentier, F. Laigle-Donadey, S. Zohar, L. Capelle, A. Behin, A. Tibi, N. Martin-Duverneuil, M. Sanson, L. lacomblez, S. Taillibert, L. puybasser, R. Van Effenterre, J.Y. Delattre, A.F. Carpentier, Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro. Oncol, 2006, 8: 60-6.

26. D. Muraoka, T. kato, L. Wang, Y. Maeda, T. Noguchi, N. Harada, K. Takeda, H. Yagita, P. Guillaume, I. Luescher, L.J. Old, H. Nishikawa, Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. J. Immunol, 2010, 185: 3768-76.

27. H. Sultan, J. Wu, V.I. Fesenkova, A.E. Fan, D. Addis, A.M. Salazar, E. Celis, Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. J. Immunother. Cancer, 2020, 8: e001224.

28. J. De Waele, T. Verhezen, S. van der Heijden, Z.N. Berneman, M. Peeters, F. Lardon, A. Wouters, E>L.J.M. Smits, A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. J. Exp. Clin. Cancer Res, 2021, 40: 213.

29. H. Wagner. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. 1999, 73: 329-68.

30. A.M. Krieg. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 2002, 20: 709-60.

31. K. Li, Z. Chen, N. Kato, M. Gale, S.M. Lemon. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J. Biol. Chem. 2005, 280: 16739-47.

32. K. Matsumoto, Y. Asai, S. Fukuyama, K. Kan-O, Y. Matsunaga, N. Noda, H. Kitajima, K. Tanaka, Y. Nakanish. Inoue, H. IL-6 induced by double-stranded RNA augments allergic inflammation via suppression of Foxp3+ T-cell/IL-10 axis. Am. J. Respir. Cell. Mol. Biol. 2012, 46: 740-7.

33. J.A. Gracie, S.E. Robertson, I.B. McInnes, Interleukin-18. J. Leukoc. Biol. 2003, 73: 213-24.

34. V. Shankaran, H. Ikeda, A.T. Bruce, A.M. White, P.E. Swanson, L.J. Old, R.D. Schreiber. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001, 410: 1107-11.

35. F. Zhou. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 28 (2009) 239-60.

36. H.J. Marshall, K.A. Rudnick, S.G. McCarthy, L.R. San Mateo, M.C. Harris, C. McCarthy, L.A. Snyder. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine. 2006, 24: 244-53.

37. C.Y. Chang, J. Lee, E.Y. Kim, H.J. Park, C.H. Kwon, J.W. Joh, S.J. Kim. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Th1 response in a mouse hepatic cancer model. BMC Cancer. 2007, 7: 87.

38. A. Tiwari, R. Hnnah, J. Lutshumba, E. Ochiai, L.M. Weiss, Y. Suzuki. Penetration of CD8+ cytotoxic T cells into large target, tissue cysts of Toxoplasma gondii, leads to its elimination. Am. J. Pathol. 2019, 189: 1594-1607.

39. C. Mercier, M.F. Cesbron-Delauw. Toxoplasma secretory granules: one population or more? Trends Parasitol. 2015, 31: 60-71