Review of the Targeted Therapy for Advanced/Aggressive Olfactory Neuroblastoma as Adjuncts to Standard Therapy
Main Article Content
Abstract
Olfactory neuroblastoma is a rare and histologically variable malignancy arising from the olfactory neuroepithelium. While it may present indolently in early stages, aggressive or advanced forms often involve intracranial invasion, high-grade histology, and distant metastasis, leading to poor prognosis and frequent recurrence. The traditional management of olfactory neuroblastoma relies on surgical resection combined with radiotherapy, with chemotherapy applied in recurrent or metastatic settings. However, these modalities frequently fall short in high-risk cases due to resistance, recurrence, or anatomical constraints.
This review focuses on the evolving role of targeted therapy as a precision approach to treating aggressive and advanced olfactory neuroblastoma. The aim is to summarize current evidence from translational research and early-phase clinical trials regarding therapies directed at molecular abnormalities commonly identified in these tumors. Key genetic alterations include mutations in tumour protein p53 (TP53), dicer 1 ribonuclease III (DICER1), fibroblast growth factor receptor 3 (FGFR3), isocitrate dehydrogenase 2 (IDH2), anaplastic lymphoma kinase (ALK), and aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/mechanistic target of rapamycin (mTOR) pathway.
Therapeutic strategies under investigation include tyrosine kinase inhibitors (e.g., erlotinib, sorafenib), ALK inhibitors (e.g., crizotinib), mTOR inhibitors (e.g., everolimus), and immune checkpoint inhibitors (e.g., nivolumab). While early data are promising, robust clinical validation remains limited. This review also addresses the current limitations of targeted therapy in olfactory neuroblastoma, such as tumour heterogeneity, lack of large-scale trials, and challenges in molecular profiling. Continued integration of genomic data into clinical decision-making may enable more effective, individualized treatment strategies for this rare but formidable malignancy.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Arnold PM, Habib A, Newell K, Anderson KK. Esthesioneuroblastoma metastatic to the thoracic intradural and extradural space. The Spine Journal 2009;9:e1–5. https://doi.org/10.1016/j.spinee.2008.08.010
3. Yin Z, Wang Y, Wu Y, Zhang X, Wang F, Wang P, et al. Age distribution and age-related outcomes of olfactory neuroblastoma: a population-based analysis. Cancer Manag Res 2018;10:1359–64. https://doi.org/10.2147/CMAR.S151945
4. Brisson RJ, Quinn TJ, Deraniyagala RL. The role of chemotherapy in the management of olfactory neuroblastoma: A 40‐year surveillance, epidemiology, and end results registry study. Health Science Reports 2021;4:e257. https://doi.org/10.1002/hsr2.257
5. Fiani B, Quadri SA, Cathel A, Farooqui M, Ramachandran A, Siddiqi I, et al. Esthesioneuroblastoma: A Comprehensive Review of Diagnosis, Management, and Current Treatment Options. World Neurosurgery 2019;126:194–211. https://doi.org/10.1016/j.wneu.2019.03.014
6. Sharma RK, Irace AL, Overdevest JB, Turner JH, Patel ZM, Gudis DA. Association of Race, Ethnicity, and Socioeconomic Status With Esthesioneuroblastoma Presentation, Treatment, and Survival. OTO Open 2022;6:2473974X221075210. https://doi.org/10.1177/2473974X221075210
7. Dulguerov P, Calcaterra T. Esthesioneuroblastoma: The UCLA experience 1970–1990. The Laryngoscope 1992;102:843–9. https://doi.org/10.1288/00005537-199208000-00001
8. Zafereo ME, Fakhri S, Prayson R, Batra PS, Lee J, Lanza DC, et al. Esthesioneuroblastoma: 25‐year experience at a single institution. Otolaryngol--Head Neck Surg 2008;138:452–8. https://doi.org/10.1016/j.otohns.2007.12.038
9. Abdelmeguid AS. Olfactory Neuroblastoma. Curr Oncol Rep 2018;20:7. https://doi.org/10.1007/s11912-018-0661-6
10. Tosoni A, Di Nunno V, Gatto L, Corradi G, Bartolini S, Ranieri L, et al. Olfactory neuroblastoma: diagnosis, management, and current treatment options. Front Oncol 2023;13:1242453. https://doi.org/10.3389/fonc.2023.1242453
11. Palejwala S, Sharma S, Le C, Chang E, Erman A, Lemole G. Complex Skull Base Reconstructions in Kadish D Esthesioneuroblastoma: Case Report. J Neurol Surg Rep 2017;78:e86–92. https://doi.org/10.1055/s-0037-1601877
12. Bradley PJ, Jones NS, Robertson I. Diagnosis and management of esthesioneuroblastoma: Current Opinion in Otolaryngology & Head and Neck Surgery 2003;11:112–8. https://doi.org/10.1097/00020840-200304000-00009
13. Roytman M, Tassler AB, Kacker A, Schwartz TH, Dobri GA, Strauss SB, et al. [68Ga]-DOTATATE PET/CT and PET/MRI in the diagnosis and management of esthesioneuroblastoma: illustrative cases. Journal of Neurosurgery: Case Lessons 2021;1:CASE2058. https://doi.org/10.3171/CASE2058
14. Morita A, Ebersold MJ, Olsen KD, Foote RL, Lewis JE, Quast LM. Esthesioneuroblastoma. Neurosurgery 1993;32:706–15. https://doi.org/10.1227/00006123-199305000-00002
15. Kadish S, Goodman M, Wang CC. Olfactory neuroblastoma—A clinical analysis of 17 cases. Cancer 1976;37:1571–6. https://doi.org/10.1002/1097-0142(197603)37:3<1571::AID-CNCR2820370347>3.0.CO;2-L
16. Jethanamest D, Morris LG, Sikora AG, Kutler DI. Esthesioneuroblastoma: A Population-Based Analysis of Survival and Prognostic Factors. Arch Otolaryngol Head Neck Surg 2007;133:276. https://doi.org/10.1001/archotol.133.3.276
17. Joshi RR, Husain Q, Roman BR, Cracchiolo J, Yu Y, Tsai J, et al. Comparing Kadish, TNM, and the modified Dulguerov staging systems for esthesioneuroblastoma. Journal of Surgical Oncology 2019;119:130–42. https://doi.org/10.1002/jso.25293
18. Goshtasbi K, Abiri A, Abouzari M, Sahyouni R, Wang BY, Tajudeen BA, et al. Hyams grading as a predictor of metastasis and overall survival in esthesioneuroblastoma: a meta‐analysis. Int Forum Allergy Rhinol 2019;9:1054–62. https://doi.org/10.1002/alr.22373
19. Dulguerov P, Allal AS, Calcaterra TC. Esthesioneuroblastoma: a meta-analysis and review. The Lancet Oncology 2001;2:683–90. https://doi.org/10.1016/S1470-2045(01)00558-7
20. Ozsahin M, Gruber G, Olszyk O, Karakoyun-Celik O, Pehlivan B, Azria D, et al. Outcome and Prognostic Factors in Olfactory Neuroblastoma: A Rare Cancer Network Study. International Journal of Radiation Oncology*Biology*Physics 2010;78:992–7. https://doi.org/10.1016/j.ijrobp.2009.09.019
21. Hagemann J, Roesner J, Helling S, Jacobi C, Doescher J, Engelbarts M, et al. Long‐term Outcome for Open and Endoscopically Resected Sinonasal Tumors. Otolaryngol--Head Neck Surg 2019;160:862–9. https://doi.org/10.1177/0194599818815881
22. Higgins TS, Thorp B, Rawlings BA, Han JK. Outcome results of endoscopic vs craniofacial resection of sinonasal malignancies: a systematic review and pooled‐data analysis. Int Forum Allergy Rhinol 2011;1:255–61. https://doi.org/10.1002/alr.20051
23. Komotar RJ, Starke RM, Raper DMS, Anand VK, Schwartz TH. Endoscopic Endonasal Compared with Anterior Craniofacial and Combined Cranionasal Resection of Esthesioneuroblastomas. World Neurosurgery 2013;80:148–59. https://doi.org/10.1016/j.wneu.2012.12.003
24. Shahangian A, Soler ZM, Baker A, Wise SK, Rereddy SK, Patel ZM, et al. Successful repair of intraoperative cerebrospinal fluid leaks improves outcomes in endoscopic skull base surgery. Int Forum Allergy Rhinol 2017;7:80–6. https://doi.org/10.1002/alr.21845
25. Spielman DB, Liebowitz A, Grewal M, Safi C, Overdevest JB, Iloreta AM, et al. Exclusively endoscopic surgical resection of esthesioneuroblastoma: A systematic review. World j Otorhinolaryngol-Head Neck Surg 2022;8:66–72. https://doi.org/10.1002/wjo2.10
26. Patel S, Singh B, Stambuk H, Carlson D, Bridger P, Cantu G, et al. Craniofacial Surgery for Esthesioneuroblastoma: Report of an International Collaborative Study. J Neurol Surg B 2012;73:208–20. https://doi.org/10.1055/s-0032-1311754
27. Ow TJ, Bell D, Kupferman ME, DeMonte F, Hanna EY. Esthesioneuroblastoma. Neurosurgery Clinics of North America 2013;24:51–65. https://doi.org/10.1016/j.nec.2012.08.005
28. Duo G-S, Feng J-L, Zhang Z-Y, Wang L-J. Survival impact of postoperative radiotherapy in patients with olfactory neuroblastoma: 513 cases from the SEER database. Cancer/Radiothérapie 2022;26:663–9. https://doi.org/10.1016/j.canrad.2021.12.006
29. Elkon D, Hightower SI, Lim ML, Cantrell RW, Constable WC. Esthesioneuroblastoma. Cancer 1979;44:1087–94. https://doi.org/10.1002/1097-0142(197909)44:3<1087::AID-CNCR2820440343>3.0.CO;2-A
30. Eich HT, Staar S, Micke O, Eich PD, Stützer H, Müller R-P. Radiotherapy of esthesioneuroblastoma. International Journal of Radiation Oncology* Biology*Physics 2001;49:155–60. https://doi.org/10.1016/S0360-3016(00)00811-7
31. Bao C, Hu W, Hu J, Dong Y, Lu JJ, Kong L. Intensity-Modulated Radiation Therapy for Esthesioneuroblastoma: 10-Year Experience of a Single Institute. Front Oncol 2020;10:1158. https://doi.org/10.3389/fonc.2020.01158
32. Hu W, Hu J, Gao J, Yang J, Qiu X, Kong L, et al. Intensity-modulated particle beam radiation therapy in the management of olfactory neuroblastoma. Ann Transl Med 2020;8:926–926. https://doi.org/10.21037/atm-19-4790
33. McDonald MW, Liu Y, Moore MG, Johnstone PAS. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy. Radiat Oncol 2016;11:32. https://doi.org/10.1186/s13014-016-0600-3
34. Hu W, Hu J, Huang Q, Gao J, Yang J, Qiu X, et al. Particle beam radiation therapy for sinonasal malignancies: Single institutional experience at the Shanghai Proton and Heavy Ion Center. Cancer Medicine 2020;9:7914–24. https://doi.org/10.1002/cam4.3393
35. Patil VM, Joshi A, Noronha V, Sharma V, Zanwar S, Dhumal S, et al. Neoadjuvant Chemotherapy in Locally Advanced and Borderline Resectable Nonsquamous Sinonasal Tumors (Esthesioneuroblastoma and Sinonasal Tumor with Neuroendocrine Differentiation). International Journal of Surgical Oncology 2016;2016:1–8. https://doi.org/10.1155/2016/6923730
36. Sheehan JM, Sheehan JP, Jane JA, Polin RS. Chemotherapy for esthesioneuroblastomas. Neurosurg Clin N Am 2000;11:693–701.
37. Fitzek MM, Thornton AF, Varvares M, Ancukiewicz M, Mcintyre J, Adams J, et al. Neuroendocrine tumors of the sinonasal tract: Results of a prospective study incorporating chemotherapy, surgery, and combined proton‐photon radiotherapy. Cancer 2002;94:2623–34. https://doi.org/10.1002/cncr.10537
38. Zappia JJ, Carroll WR, Wolf GT, Thornton AF, Ho L, Krause CJ. Olfactory neuroblastoma: The results of modern treatment approaches at the University of Michigan. Head & Neck 1993;15:190–6. https://doi.org/10.1002/hed.2880150303
39. Carney ME, O’Reilly RC, Sholevar B, Buiakova OI, Lowry LD, Keane WM, et al. Expression of the humanAchaete-Scute 1 gene in olfactory neuroblastoma (esthesioneuroblastoma). J Neuro-Oncol 1995;26:35–43. https://doi.org/10.1007/BF01054767
40. Jiang S-X, Kameya T, Asamura H, Umezawa A, Sato Y, Shinada J, et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Modern Pathology 2004;17:222–9. https://doi.org/10.1038/modpathol.3800038
41. Taggart MW, Hanna EY, Gidley P, Weber RS, Bell D. Achaete-scute homolog 1 expression closely correlates with endocrine phenotype and degree of differentiation in sinonasal neuroendocrine tumors. Annals of Diagnostic Pathology 2015;19:154–6. https://doi.org/10.1016/j.anndiagpath.2015.03.009
42. Mhawech P, Berczy M, Assaly M, Herrmann F, Bouzourene H, Allal AS, et al. Human achaete-scute Homologue (hASH1) mRNA Level as a Diagnostic Marker to Distinguish Esthesioneuroblastoma From Poorly Differentiated Tumors Arising in the Sinonasal Tract. Am J Clin Pathol 2004;122:100–5. https://doi.org/10.1309/QD0K9Q1JBH6B5GQQ
43. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T. ASH1 Gene Is a Specific Therapeutic Target for Lung Cancers with Neuroendocrine Features. Cancer Research 2005;65:10680–5. https://doi.org/10.1158/0008-5472.CAN-05-1404
44. Sriuranpong V, Borges MW, Strock CL, Nakakura EK, Watkins DN, Blaumueller CM, et al. Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1. Molecular and Cellular Biology 2002;22:3129–39. https://doi.org/10.1128/MCB.22.9.3129-3139.2002
45. Hoff PM, Machado KK. Role of angiogenesis in the pathogenesis of cancer. Cancer Treatment Reviews 2012;38:825–33. https://doi.org/10.1016/j.ctrv.2012.04.006
46. Zeng M, Cui Y, Wu C. [Expression of SSTR2 and P-STAT3 in human olfactory neuroblastoma]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2010;24:690–2.
47. Diensthuber M, Potinius M, Stan A-C, Samii M, Lenarz T, Stöver T. Expression of VEGF and bcl-2 in Olfactory Neuroblastoma: Association with Microvessel Density. Skull Base 2009;19:s-2009-1222413. https://doi.org/10.1055/s-2009-1222413
48. Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, et al. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA 2014;111:14788–93. https://doi.org/10.1073/pnas.1410419111
49. Kim J, Kong G, Lee CH, Kim DY, Rhee C, Min Y, et al. Expression of Bcl‐2 in Olfactory Neuroblastoma and its Association with Chemotherapy and Survival. Otolaryngol--Head Neck Surg 2008;139:708–12. https://doi.org/10.1016/j.otohns.2008.03.011
50. Koschny R, Holland H, Sykora J, Erdal H, Krupp W, Bauer M, et al. Bortezomib sensitizes primary human esthesioneuroblastoma cells to TRAIL-induced apoptosis. J Neurooncol 2010;97:171–85. https://doi.org/10.1007/s11060-009-0010-6
51. Diensthuber M, Potinius M, Rodt T, Stan AC, Welkoborsky H-J, Samii M, et al. Expression of bcl-2 is associated with microvessel density in olfactory neuroblastoma. J Neurooncol 2008;89:131–9. https://doi.org/10.1007/s11060-008-9602-9
52. Dunbar EM, Pumphrey PK, Bidari S. Unexpectedly Durable Palliation of Metastatic Olfactory Neuroblastoma Using Anti-Angiogenic Therapy with Bevacizumab. Rare Tumors 2012;4:101–5. https://doi.org/10.4081/rt.2012.e33
53. Weinreb I, Goldstein D, Irish J, Perez-Ordonez B. Expression patterns of Trk-A, Trk-B, GRP78, and p75NRT in olfactory neuroblastoma. Human Pathology 2009;40:1330–5. https://doi.org/10.1016/j.humpath.2009.02.001
54. Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA 2014;111:10299–304. https://doi.org/10.1073/pnas.1404399111
55. Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA, Fournier M, et al. Neurotrophin Signaling via TrkB and TrkC Receptors Promotes the Growth of Brain Tumor-initiating Cells. Journal of Biological Chemistry 2015;290:3814–24. https://doi.org/10.1074/jbc.M114.599373
56. Forsyth PA, Krishna N, Lawn S, Valadez JG, Qu X, Fenstermacher DA, et al. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells. Journal of Biological Chemistry 2014;289:8067–85. https://doi.org/10.1074/jbc.M113.513762
57. Combaret V, Gross N, Lasset C, Balmas K, Bouvier R, Frappaz D, et al. Clinical relevance of TRKA expression on neuroblastoma: comparison with N-MYC amplification and CD44 expression. Br J Cancer 1997;75:1151–5. https://doi.org/10.1038/bjc.1997.198
58. Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 2011;68:1057–65. https://doi.org/10.1007/s00280-011-1581-4
59. Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, et al. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Letters 2016; 372:179–86. https://doi.org/10.1016/j.canlet.2016.01.018
60. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622–9. https://doi.org/10.1002/humu.20495
61. Hirose T, Scheithauer BW, Lopes MBS, Gerber HA, Altermatt HJ, Vandenberg SR, et al. Olfactory neuroblastoma. An immunohistochemical, ultrastructural, and flow cytometric study. Cancer 1995;76:4–19. https://doi.org/10.1002/1097-0142(19950701)76:1<4::AID-CNCR2820760103>3.0.CO;2-E
62. Cha S, Lee J, Shin J-Y, Kim J-Y, Sim SH, Keam B, et al. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis. BMC Cancer 2016;16:170. https://doi.org/10.1186/s12885-016-2209-1
63. Zhang X-Y, Zhang P-Y. Combinations in multimodality treatments and clinical outcomes during cancer. Oncology Letters 2016;12:4301–4. https://doi.org/10.3892/ol.2016.5242
64. Yang X, Li J, Yang J. Promising Molecular Targets and Novel Therapeutic Approaches in Neuroblastoma. Curr Pharmacol Rep 2022;9:43–58. https://doi.org/10.1007/s40495-022-00306-8
65. Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Reports 2023; 42:112978. https://doi.org/10.1016/j.celrep.2023.112978
66. Chen D. Targeted therapy evolution from defining a sub-population to crossing multi-indications. Adv Pharm Bull 2024:1. https://doi.org/10.34172/apb.43306
67. Kumar M. The Precision Oncology Approach to Molecular Cancer Therapeutics Targeting Oncogenic Signaling Pathways is a Means to an End 2024. https://doi.org/10.31219/osf.io/wbp3q
68. Papachristos A, Sivolapenko GB. Pharmacogenomics, Pharmacokinetics and Circulating Proteins As Biomarkers for Bevacizumab Treatment Optimization in Patients with Cancer: A Review. JPM 2020;10:79. https://doi.org/10.3390/jpm10030079
69. Nowak-Sliwinska P, Van Beijnum JR, Griffioen CJ, Huinen ZR, Sopesens NG, Schulz R, et al. Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy. Angiogenesis 2023;26:279–93. https://doi.org/10.1007/s10456-022-09863-4
70. Jangra J. A Review on Bevacizumab: An Anti-Cancer Drug. Research & Reviews: Journal of Pharmaceutical Analysis 2016;5:1–7.
71. Wang L, Ding Y, Wei L, et al. Recurrent Olfactory Neuroblastoma Treated With Cetuximab and Sunitinib: A Case Report. Medicine (Baltimore). 2016;95(18):e3536. doi:10.1097/MD.0 000000000003536
72. Czapiewski P, Kunc M, Haybaeck J. Genetic and molecular alterations in olfactory neuroblastoma: implications for pathogenesis, prognosis and treatment. Oncotarget. 2016;7(32): 52584-52596. doi:10.18632/oncotarget.9683
73. Dogan S, Vasudevaraja V, Xu B, et al. DNA methylation-based classification of sinonasal undifferentiated carcinoma. Mod Pathol. 2019;32( 10):1447-1459. doi:10.1038/s41379-019-0285-x
74. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115-124. doi:10.1056/NEJMoa065044
75. Tseng YJ, Chen CN, Hong RL, Kung WM, Huang AP. Posterior Reversible Encephalopathy Syndrome after Lenvatinib Therapy in a Patient with Olfactory Neuroblastoma. Brain Sci. 2022;13(1 ):33. Published 2022 Dec 23. doi:10.3390/brainsci 13010033
76. Kong D-H, Kim M, Jang J, Na H-J, Lee S. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. IJMS 2017;18:1786. https://doi.org/10.3390/ijms18081786
77. Murina A, Uaisova А, Ergalieva A. ADVANTAGES AND PROSPECTS OF TARGETED THERAPY IN ONCOLOGICAL PRACTICE: A literature review. Onkol Radiol Kaz 2022;63:70–80. https://doi.org/10.52532/2521-6414-2022-1-63-70-80
78. Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023;15:1653. https://doi.org/10.3390/pharmaceutics15061653
79. Meric-Bernstam F, Ford JM, O’Dwyer PJ, Shapiro GI, McShane LM, Freidlin B, et al. National Cancer Institute Combination Therapy Platform Trial with Molecular Analysis for Therapy Choice (ComboMATCH). Clinical Cancer Research 2023; 29:1412–22. https://doi.org/10.1158/1078-0432.CCR-22-3334
80. Kruczała M, Sas-Korczyńska B. Radiotherapy and targeted therapy – a review of the literature. Nowotwory Journal of Oncology 2023;73:91–4. https://doi.org/10.5603/NJO.a2023.0013
81. Wrona A, Dziadziuszko R, Jassem J. Combining radiotherapy with targeted therapies in non-small cell lung cancer: focus on anti-EGFR, anti-ALK and anti-angiogenic agents. Transl Lung Cancer Res 2021;10:2032–47. https://doi.org/10.21037/tlcr-20-552