The Impact of Early Mobilization on Post-Operative Ileus: A Systematic Review

Main Article Content

Derick Rodríguez-Reyes, MD Camelia Carvajal-Matta, BS Jeremy J. González, BS Gabriel Figueroa, MD Miguel Serpa-Irizarry, MD Angel Rivera Barrios, MD Arnaldo Figueroa, MD

Abstract

Postoperative ileus (POI) is a common complication following abdominal surgery characterized by delayed gastrointestinal (GI) motility, leading to prolonged hospital stays, increased healthcare costs, and patient discomfort. Early mobilization has been proposed as a strategy to mitigate Postoperative ileus, yet its efficacy remains a subject of investigation. This systematic review and meta-analysis evaluates the impact of early mobilization on postoperative ileus duration, hospital length of stay, and overall patient outcomes. Analysis of pooled data from eligible studies demonstrated that early mobilization significantly reduced the duration of postoperative ileus by an average of 1.2 days (95% CI: 0.8-1.6, p<0.01). Patients who engaged in early mobilization had shorter hospital stays (mean reduction: 2.3 days, 95% CI: 1.7-2.9, p<0.01) and lower opioid consumption postoperatively. Mechanistically, early mobilization enhanced vagal tone, improved enteric nervous system function, promoted gut perfusion, reduced inflammation, and decreased opioid dependence. These findings suggest that early mobilization is an effective, non-invasive intervention that enhances gastrointestinal recovery and reduces postoperative ileus duration following abdominal surgery. Implementing structured mobilization protocols should be a priority in postoperative care to optimize patient outcomes and healthcare resource utilization.

Keywords: Postoperative ileus, Early mobilization, Abdominal surgery, Gastrointestinal recovery, Hospital length of stay, Opioid consumption, Postoperative care, Enhanced recovery, Systematic review, Meta-analysis

Article Details

How to Cite
RODRÍGUEZ-REYES, Derick et al. The Impact of Early Mobilization on Post-Operative Ileus: A Systematic Review. Medical Research Archives, [S.l.], v. 13, n. 7, july 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6637>. Date accessed: 06 dec. 2025. doi: https://doi.org/10.18103/mra.v13i7.6637.
Section
Review Articles

References

1. Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol Motil. 2016;28(4):455-462. doi:10.1111/nmo.12817.

2. Yuan PQ, Taché Y. Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: prevention by central vagal activation in rats. Am J Physiol Gastrointest Liver Physiol. 2017;313( 4):G320-G329. doi:10.1152/ajpgi.00121.2017.

3. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339-1368. doi:10.1002/cphy.c130055.

4. Lubbers T, Buurman W, Luyer M. Controlling postoperative ileus by vagal activation. World J Gastroenterol. 2010;16(14):1683-1687. doi:10.374 8/wjg.v16.i14.1683.

5. Farro G, Gomez-Pinilla PJ, Di Giovangiulio M, et al. Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus. Neurogastroenterol Motil. 2016;28(6):934-947. doi:10.1111/nmo.12796.

6. Wehner S, Behrendt FF, Lyutenski BN, et al. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut. 2007;56(2):176-185. doi:10.1136/gut .2005.089615.

7. Wehner S, Vilz TO, Stoffels B, Kalff JC. Immune mediators of postoperative ileus. Langenbecks Arch Surg. 2012;397(4):591-601. doi:10.1007/s00 423-012-0915-y.

8. Mallesh S, Schneider R, Schneiker B, et al. Sympathetic denervation alters the inflammatory response of resident muscularis macrophages upon surgical trauma and ameliorates postoperative ileus in mice. Int J Mol Sci. 2021;22(13):6872. doi:10.3390/ijms22136872.

9. Camilleri M, Lembo A, Katzka DA. Opioids in gastroenterology: treating adverse effects and creating therapeutic benefits. Clin Gastroenterol Hepatol. 2017;15(9):1338-1349. doi:10.1016/j.cgh. 2017.05.014.

10. Huizinga JD, Hussain A, Chen JH. Generation of gut motor patterns through interactions between interstitial cells of Cajal and the intrinsic and extrinsic autonomic nervous systems. Adv Exp Med Biol. 2022;1383:205-212. doi:10.1007/978-3-031-05843-1_19.

11. Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev. 2024;104(1):329-398. doi:10.1152/physrev.00036.2022.

12. Sanders KM, Santana LF, Baker SA. Interstitial cells of Cajal: pacemakers of the gastrointestinal tract. J Physiol. 2023. doi:10.1113/JP284745.

13. Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca2+ signaling is the basis for pacemaker activity and neurotransduction in interstitial cells of the GI tract. Adv Exp Med Biol. 2022;1383:229-241. doi:10.1007/978-3-031-05843-1_22.

14. Hirst GD, Ward SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol. 2003;550(Pt 2):337-346. doi:10.1113/jphysiol.2003.043299.

15. Bauer AJ, Boeckxstaens GE. Mechanisms of postoperative ileus. Neurogastroenterol Motil. 2004;16 Suppl 2:54-60. doi:10.1111/j.1743-3150. 2004.00558.x.

16. Stakenborg N, Gomez Pinilla PJ, Boeckxstaens GE. Postoperative ileus: pathophysiology, current therapeutic approaches. Handb Exp Pharmacol. 2017;239:39-57. doi:10.1007/164_2016_108.

17. Leven P, Schneider R, Schneider L, et al. Β-adrenergic signaling triggers enteric glial reactivity and acute enteric gliosis during surgery. J Neuroinflammation. 2023;20(1):255. doi:10.1186/s 12974-023-02937-0.

18.Wang Z, Stakenborg N, Boeckxstaens G. Postoperative ileus: immune mechanisms and potential therapeutic interventions. Neurogastroenterol Motil. 2024:e14951. doi:10.1111/nmo.14951.

19. Buscail E, Deraison C. Postoperative ileus: a pharmacological perspective. Br J Pharmacol. 2022;179(13):3283-3305. doi:10.1111/bph.15800.

20. Tian M, Alimujiang M, Chen JD. Ameliorating effects and mechanisms of intra-operative vagal nerve stimulation on postoperative recovery after sleeve gastrectomy in rats. Obes Surg. 2020;30(8): 2980-2987. doi:10.1007/s11695-020-04626-w.

21. Mueller MH, Glatzle J, Kampitoglou D, et al. Differential sensitization of afferent neuronal pathways during postoperative ileus in the mouse jejunum. Ann Surg. 2008;247(5):791-802. doi:10.10 97/SLA.0b013e31816a9d97.

22. Brandlhuber M, Benhaqi P, Brandlhuber B, et al. The role of vagal innervation on the early development of postoperative ileus in mice. Neurogastroenterol Motil. 2022;34(2):e14308. doi:10.1111/nmo.14308.

23. Beard TL, Leslie JB, Nemeth J. The opioid component of delayed gastrointestinal recovery after bowel resection. J Gastrointest Surg. 2011;15 (7):1259-1268. doi:10.1007/s11605-011-1500-3.

24. Rivas E, Cohen B, Pu X, et al. Pain and opioid consumption and mobilization after surgery: post hoc analysis of two randomized trials. Anesthesiology. 2022;136(1):115-126. doi:10.1097/ALN.0000000000004037.

Most read articles by the same author(s)