Review of the Targeted Therapy for Advanced/Aggressive Neuroblastoma as Adjuncts to Standard Therapy

Main Article Content

Aravind Bheemacharya Madhwacharya Abhinav Kumar B. Nirmal Kumar

Abstract

Neuroblastoma is an aggressive paediatric malignancy originating from neural crest cells. It typically presents as an abdominal mass with associated symptoms such as fever, weight loss, and bone pain. It primarily affects children below 5 years; also, it is categorised based on clinical and genetic features. Likewise, staging systems like the International Neuroblastoma Risk Group (INRG), which guides prognosis and treatment decisions, are investigated. Managing advanced or aggressive neuroblastoma remains a significant challenge due to high-risk features like MYCN (myelocytomatosis-neuroblastoma) amplification and Anaplastic Lymphoma Kinase (ALK) mutations despite advancements in treatment. Standard therapies, including surgery, chemotherapy, radiotherapy, and in some instances, immunotherapy, are available. Yet, these therapies often fail to provide a long-term cure for high-risk patients, necessitating new therapeutic approaches. Still, emerging targeted therapies offer promising adjuncts to standard treatments, focusing on molecular targets to improve outcomes. Thus, this review explores the pathophysiology of neuroblastoma, highlighting critical therapeutic targets, such as MYCN, ALK, the Paired-like Homeobox 2B gene (PHOX2B), and epigenetic alterations that drive tumorigenesis. Understanding these molecular mechanisms provides the foundation for developing targeted treatments, including ALK inhibitors, MYCN-targeted therapies, and strategies to modulate rat sarcoma (Ras) Mitogen-Activated Protein Kinase (MAPK), cell cycle regulators, and apoptotic pathways. Immunotherapies, such as monoclonal antibodies and immune checkpoint inhibitors, also show potential in combination with conventional therapies.

Keywords: Neuroblastoma, Targeted Therapy, MYCN Amplification, ALK Mutations, Epigenetic Modifications, Immunotherapy, Multi-modality Therapy, Paediatric Oncology

Article Details

How to Cite
MADHWACHARYA, Aravind Bheemacharya; KUMAR, Abhinav; KUMAR, B. Nirmal. Review of the Targeted Therapy for Advanced/Aggressive Neuroblastoma as Adjuncts to Standard Therapy. Medical Research Archives, [S.l.], v. 13, n. 7, july 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6646>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i7.6646.
Section
Review Articles

References

1. Park, J. R., Eggert, A., Caron, H. (2010). Neuroblastoma: Biology, prognosis, and treatment. Hematology/Oncology Clinics of North America, 24(1), 65–86. https://doi.org/10.1016/j.hoc.2009.11.011
2. Brodeur, G. M., Hogarty, M. D., Mosse, Y. P.,, Maris, J. M. (2011). Neuroblastoma. In P. A. Pizzo, P. C. Adamson, D. G. Poplack (Eds.), Principles and Practice of Paediatric Oncology (6th ed., pp. 886-922). Lippincott Williams , Wilkins.
3. Young, J. L., Ries, L. G., Silverberg, E., Horm, J. W., Miller, R. W. (1986). Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer, 58(S2), 598–602. https://doi.org/10.1002/1097-0142(19860715)58:2+<598:AID-CNCR2820581332>3.0.CO;2-C
4. Esiashvili, N., Anderson, C., Katzenstein, H. M. (2009). Neuroblastoma. Current Problems in Cancer, 33(6), 333–360. https://doi.org/10.1016/j.currproblcancer.2009.12.001
5. Brodeur, G. M. (2003). Neuroblastoma: Biological insights into a clinical enigma. Nature Reviews Cancer, 3(3), 203–216. https://doi.org/10.1038/nrc1014
7. Brodeur, G. M., , Nakagawara, A. (1992). Molecular basis of clinical heterogeneity in neuroblastoma: Journal of Paediatric Hematology/Oncology, 14(2), 111–116. https://doi.org/10.1097/00043426-199205000-00004
8. Davidoff, A. M. (2012). Neuroblastoma. Seminars in Paediatric Surgery, 21(1), 2–14. https://doi.org/10.1053/j.sempedsurg.2011.10.009
9. Maris, J. M. (2010). Recent advances in neuroblastoma. New England Journal of Medicine, 362(23), 2202–2211. https://doi.org/10.1056/NEJMra0804577
10. London, W. B., Castel, V., Monclair, T., Ambros, P. F., Pearson, A. D. J., Cohn, S. L., Berthold, F., Nakagawara, A., Ladenstein, R. L., Iehara, T., Matthay, K. K. (2011). Clinical and biologic features predictive of survival after relapse of neuroblastoma: A report from the international neuroblastoma risk group project. Journal of Clinical Oncology, 29(24), 3286–3292. https://doi.org/10.1200/JCO.2010.34.3392
11. Kushner, B. H. (2004). Neuroblastoma: A disease requiring a multitude of imaging studies. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 45(7), 1172–1188.
12. Colon, N. C., , Chung, D. H. (2011). Neuroblastoma. Advances in Paediatrics, 58(1), 297–311. https://doi.org/10.1016/j.yapd.2011.03.011
13. Ishola, T. A., , Chung, D. H. (2007). Neuroblastoma. Surgical Oncology, 16(3), 149–156. https://doi.org/10.1016/j.suronc.2007.09.005
14. Darnell, R. B., , Posner, J. B. (2003). Paraneoplastic syndromes involving the nervous system. New England Journal of Medicine, 349(16), 1543–1554. https://doi.org/10.1056/NEJMra023009
15. Goto, S., Umehara, S., Gerbing, R. B., Stram, D. O., Brodeur, G. M., Seeger, R. C., Lukens, J. N., Matthay, K. K., Shimada, H. (2001). Histopathology (International neuroblastoma pathology classification) and MYCN status in patients with peripheral neuroblastic tumours: A report from the Children’s Cancer Group. Cancer, 92(10), 2699–2708. https://doi.org/10.1002/1097-0142(20011115)92:10<2699::AID-CNCR1624>3.0.CO;2-A
16. Janoueix-Lerosey, I., Schleiermacher, G., , Delattre, O. (2010). Molecular pathogenesis of peripheral neuroblastic tumours. Oncogene, 29(11), 1566–1579. https://doi.org/10.1038/onc.2009.518
17. Alexander, A., Hunter, K., Rubin, M., , Bhat, A. P. (2021). Extraosseous Ewing’s sarcoma: pictorial review of imaging findings, differential diagnosis, and pathologic correlation. Indian Journal of Radiology and Imaging, 31(01), 203-209. https://doi.org/10.1055/s-0041-1729770
18. Maris, J. M. (2005). The biologic basis for neuroblastoma heterogeneity and risk stratification: Current Opinion in Paediatrics, 17(1), 7–13. https://doi.org/10.1097/01.mop.0000150631.60571.89
19. Monclair, T., Brodeur, G. M., Ambros, P. F., Brisse, H. J., Cecchetto, G., Holmes, K., Kaneko, M., London, W. B., Matthay, K. K., Nuchtern, J. G., Von Schweinitz, D., Simon, T., Cohn, S. L., , Pearson, A. D. J. (2009). The international neuroblastoma risk group (Inrg) staging system: An inrg task force report. Journal of Clinical Oncology, 27(2), 298–303. https://doi.org/10.1200/JCO.2008.16.6876
20. Irwin, M. S., Naranjo, A., Zhang, F. F., Cohn, S. L., London, W. B., Gastier-Foster, J. M., , Hogarty, M. D. (2021). Revised neuroblastoma risk classification system: a report from the Children's Oncology Group. Journal of Clinical Oncology, 39(29), 3229-3241. http://ascopubs.org/doi/full/10.1200/JCO.21.00278
21. Sokol, E., , Desai, A. V. (2019). The evolution of risk classification for neuroblastoma. Children, 6(2), 27. http://dx.doi.org/10.3390/children6020027
22. Oncohema Key. (2025). Neuroblastoma: Biology, Prognosis, and Treatment. Oncohema Key. https://oncohemakey.com/neuroblastoma-biology-prognosis-and-treatment/
23. Morgenstern, D. A., London, W. B., Stephens, D., Volchenboum, S. L., Simon, T., Nakagawara, A., Irwin, M. S. (2016). Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: a study from the International Neuroblastoma Risk Group database. European Journal of Cancer, 65, 1-10. http://dx.doi.org/10.1016/j.ejca.2016.06.005
24. Matthay, K., Maris, J., Schleiermacher, G. et al. (2016). Neuroblastoma. Nat Rev Dis Primers, 2, 1-21. https://doi.org/10.1038/nrdp.2016.78
25. Watanabe, K., Kimura, S., Seki, M., Isobe, T., Kubota, Y., Sekiguchi, M., Sato-Otsubo, A., Hiwatari, M., Kato, M., Oka, A., Koh, K., Sato, Y., Tanaka, H., Miyano, S., Kawai, T., Hata, K., Ueno, H., Nannya, Y., Suzuki, H., Takita, J. (2022). Identification of the ultrahigh-risk subgroup in neuroblastoma cases through DNA methylation analysis and its treatment exploiting cancer metabolism. Oncogene, 41(46), 4994–5007. https://doi.org/10.1038/s41388-022-02489-2
26. Lee, A. C. (2012). Neuroblastoma: The challenge remains. Singapore Medical Journal, 53(1), 1–2.
27. Keane, S., Martinsson, T., Kogner, P., Ejeskär, K. (2021). The loss of DLG2 isoform 7/8, but not isoform 2, is critical in advanced staged neuroblastoma. Cancer Cell International, 21(1), 170. https://doi.org/10.1186/s12935-021-01851-w
28. Marples, B. (2013). Overcoming the mechanism of radioresistance in neuroblastoma: Defense Technical Information Center. https://doi.org/10.21236/ADA598375
29. Huang, C.-T., Hsieh, C.-H., Lee, W.-C., Liu, Y.-L., Yang, T.-S., Hsu, W.-M., Oyang, Y.-J., Huang, H.-C., , Juan, H.-F. (2019). Therapeutic targeting of non-oncogene dependencies in high-risk neuroblastoma. Clinical Cancer Research, 25(13), 4063–4078. https://doi.org/10.1158/1078-0432.CCR-18-4117
30. Mee, T., Kirkby, N. F., Defourny, N. N., Kirkby, K. J., , Burnet, N. G. (2023). The use of radiotherapy, surgery and chemotherapy in the curative treatment of cancer: Results from the FORTY (Favourable outcomes from radiotherapy) project. The British Journal of Radiology, 96(1152), 20230334. https://doi.org/10.1259/bjr.20230334
31. Esparragosa Vazquez, I., , Ducray, F. (2024). The role of radiotherapy, chemotherapy, and targeted therapies in adult intramedullary spinal cord tumours. Cancers, 16(16), 2781. https://doi.org/10.3390/cancers16162781
32. Kato, K. (2015). Chemotherapy and chemoradiotherapy. In N. Ando (Ed.), Esophageal Squamous Cell Carcinoma (pp. 197–225). Springer Japan. https://doi.org/10.1007/978-4-431-54977-2_12
33. Mathan, S. V., Rajput, M., Singh, R. P. (2022). Chemotherapy and radiation therapy for cancer. In Understanding Cancer (pp. 217–236). Elsevier. https://doi.org/10.1016/B978-0-323-99883-3.00003-2
34. Liang, T., Tong, W., Ma, S., , Chang, P. (2020). Standard therapies: Solutions for improving therapeutic effects of immune checkpoint inhibitors on colorectal cancer. OncoImmunology, 9(1), 1773205. https://doi.org/10.1080/2162402X.2020.1773205
35. Yu, A. L., Gilman, A. L., Ozkaynak, M. F., London, W. B., Kreissman, S. G., Chen, H. X., Smith, M., Anderson, B., Villablanca, J. G., Matthay, K. K., Shimada, H., Grupp, S. A., Seeger, R., Reynolds, C. P., Buxton, A., Reisfeld, R. A., Gillies, S. D., Cohn, S. L., Maris, J. M., , Sondel, P. M. (2010). Anti-gd2 antibody with gm-csf, interleukin-2, and isotretinoin for neuroblastoma. New England Journal of Medicine, 363(14), 1324–1334. https://doi.org/10.1056/NEJMoa0911123
36. Mossé, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., Laquaglia, M. J., Sennett, R., Lynch, J. E., Perri, P., Laureys, G., Speleman, F., Kim, C., Hou, C., Hakonarson, H., Torkamani, A., Schork, N. J., Brodeur, G. M., Tonini, G. P., … Maris, J. M. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 455(7215), 930–935. https://doi.org/10.1038/nature07261
37. Gerges, A., , Canning, U. (2024). Neuroblastoma and its target therapies: A medicinal chemistry review. ChemMedChem, 19(9), e202300535. https://doi.org/10.1002/cmdc.202300535
38. Kendsersky, N. M., Odrobina, M., Mabe, N. W., Farrel, A., Grossmann, L., Tsang, M., Groff, D., Wolpaw, A. J., Zammarchi, F., Van Berkel, P. H., Dang, C. V., Mossé, Y. P., Stegmaier, K., , Maris, J. M. (2024). Lineage-dependence of the neuroblastoma surfaceome defines tumour cell state-dependent and independent immunotherapeutic targets. https://doi.org/10.1101/2024.06.27.600865
39. Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D., Carter, S. L., Cibulskis, K., Hanna, M., Kiezun, A., Kim, J., Lawrence, M. S., Lichenstein, L., McKenna, A., Pedamallu, C. S., Ramos, A. H., Shefler, E., Sivachenko, A., Sougnez, C., Maris, J. M. (2013). The genetic landscape of high-risk neuroblastoma. Nature Genetics, 45(3), 279–284. https://doi.org/10.1038/ng.2529
40. Fujita, T., Igarashi, J., Okawa, E. R., Gotoh, T., Manne, J., Kolla, V., Kim, J., Zhao, H., Pawel, B. R., London, W. B., Maris, J. M., White, P. S., , Brodeur, G. M. (2008). Chd5 , a tumour suppressor gene deleted from 1p36. 31 in neuroblastomas. JNCI: Journal of the National Cancer Institute, 100(13), 940–949. https://doi.org/10.1093/jnci/djn176
41. Theissen, J., Oberthuer, A., Hombach, A., Volland, R., Hertwig, F., Fischer, M., Spitz, R., Zapatka, M., Brors, B., Ortmann, M., Simon, T., Hero, B., , Berthold, F. (2014). Chromosome 17/17q gain and unaltered profiles in high resolution array‐CGH are prognostically informative in neuroblastoma. Genes, Chromosomes and Cancer, 53(8), 639–649. https://doi.org/10.1002/gcc.22174
42. De Preter, K., Vermeulen, J., Brors, B., Delattre, O., Eggert, A., Fischer, M., Janoueix-Lerosey, I., Lavarino, C., Maris, J. M., Mora, J., Nakagawara, A., Oberthuer, A., Ohira, M., Schleiermacher, G., Schramm, A., Schulte, J. H., Wang, Q., Westermann, F., Speleman, F., , Vandesompele, J. (2010). Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clinical Cancer Research, 16(5), 1532–1541. https://doi.org/10.1158/1078-0432.CCR-09-2607
43. Liu, Y., Fleishman, J. S., Wang, H., , Huo, L. (2024). Pharmacologically targeting ferroptosis and cuproptosis in neuroblastoma. Molecular Neurobiology. https://doi.org/10.1007/s12035-024-04501-0
44. Sun, L., Shao, W., Lin, Z., Lin, J., Zhao, F., , Yu, J. (2024). Single-cell RNA sequencing explored potential therapeutic targets by revealing the tumour microenvironment of neuroblastoma and its expression in cell death. Discover Oncology, 15(1), 409. https://doi.org/10.1007/s12672-024-01286-5
45. Sundaramoorthy, S., Colombo, D. F., Sanalkumar, R., Broye, L., Balmas Bourloud, K., Boulay, G., Cironi, L., Stamenkovic, I., Renella, R., Kuttler, F., Turcatti, G., Rivera, M. N., Mühlethaler-Mottet, A., Bardet, A. F., , Riggi, N. (2024). Preclinical spheroid models identify BMX as a therapeutic target for metastatic MYCN nonamplified neuroblastoma. JCI Insight, 9(14), e169647. https://doi.org/10.1172/jci.insight.169647
46. Epp, S., Chuah, S. M., , Halasz, M. (2023). Epigenetic dysregulation in MYCN-amplified neuroblastoma. International Journal of Molecular Sciences, 24(23), 17085. https://doi.org/10.3390/ijms242317085
47. O'Donohue, T., Gulati, N., Mauguen, A., Kushner, B. H., Shukla, N., Rodriguez-Sanchez, M. I., ... , Modak, S. (2021). Differential impact of ALK mutations in neuroblastoma. JCO Precision Oncology, 5, 492-500. http://ascopubs.org/doi/full/10.1200/PO.20.00181
48. Peggion, S., Najem, S., Kolman, J. P., Reinshagen, K., Pagerols Raluy, L. (2024). Revisiting Neuroblastoma: Nrf2, NF-κB and Phox2B as a Promising Network in Neuroblastoma. Current Issues in Molecular Biology, 46(4), 3193-3208. https://doi.org/10.3390/cimb46040200
49. Pierscianek, D., Teuber‐Hanselmann, S., Ahmadipour, Y., Darkwah Oppong, M., Unteroberdörster, M., Müller, O., ... , El Hindy, N. (2020). TET2 promotor methylation and TET2 protein expression in paediatric posterior fossa ependymoma. Neuropathology, 40(2), 138-143. https://doi.org/10.1111/neup.12615
50. Laufer, B. I., Gomez, J. A., Jianu, J. M., , LaSalle, J. M. (2021). Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics, chromatin, 14, 1-15. https://doi.org/10.1186/s13072-021-00387-7
51. Gao, J., Fosbrook, C., Gibson, J., Underwood, T. J., Gray, J. C., , Walters, Z. S. (2023). Targeting EZH2 in neuroblastoma. Cancer Treatment Reviews, 119, 102600. https://doi.org/10.1016/j.ctrv.2023.102600
52. Jin, L., Liu, Y., Wu, Y., Huang, Y., , Zhang, D. (2023). REST is not resting: REST/NRSF in health and disease. Biomolecules, 13(10), 1477. https://doi.org/10.3390/biom13101477
53. Lemster, A. L., Sievers, E., Pasternack, H., Lazar-Karsten, P., Klümper, N., Sailer, V., Kirfel, J. (2022). Histone demethylase KDM5C drives prostate cancer progression by promoting EMT. Cancers, 14(8), 1894. https://doi.org/10.3390/cancers14081894
54. Hansford, L. M., Thomas, W. D., Keating, J. M., Burkhart, C. A., Peaston, A. E., Norris, M. D., Haber, M., Armati, P. J., Weiss, W. A., Marshall, G. M. (2004). Mechanisms of embryonal tumour initiation: Distinct roles for MycN expression and MYCN amplification. Proceedings of the National Academy of Sciences, 101(34), 12664–12669. https://doi.org/10.1073/pnas.0401083101
55. Schramm, A., Köster, J., Marschall, T., Martin, M., Schwermer, M., Fielitz, K., Büchel, G., Barann, M., Esser, D., Rosenstiel, P., Rahmann, S., Eggert, A., , Schulte, J. H. (2013). Next‐generation RNA sequencing reveals differential expression of MYCN target genes and suggests the mTOR pathway as a promising therapy target in MYCN‐ amplified neuroblastoma. International Journal of Cancer, 132(3). https://doi.org/10.1002/ijc.27787
56. Huang, M., Weiss, W. A. (2013). Neuroblastoma and mycn. Cold Spring Harbor Perspectives in Medicine, 3(10), a014415–a014415. https://doi.org/10.1101/cshperspect.a014415
57. Wakamatsu, Y., Watanabe, Y., Nakamura, H., Kondoh, H. (1997). Regulation of the neural crest cell fate by N-myc: Promotion of ventral migration and neuronal differentiation. Development, 124(10), 1953–1962. https://doi.org/10.1242/dev.124.10.1953
58. Fredlund, E., Ringnér, M., Maris, J. M., , Påhlman, S. (2008). High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proceedings of the National Academy of Sciences, 105(37), 14094–14099. https://doi.org/10.1073/pnas.0804455105
59. Louis, C. U., , Shohet, J. M. (2015). Neuroblastoma: Molecular pathogenesis and therapy. Annual Review of Medicine, 66(1), 49–63. https://doi.org/10.1146/annurev-med-011514-023121
60. Rosswog, C., Fassunke, J., Ernst, A., Schömig-Markiefka, B., Merkelbach-Bruse, S., Bartenhagen, C., Cartolano, M., Ackermann, S., Theissen, J., Blattner-Johnson, M., Jones, B., Schramm, K., Altmüller, J., Nürnberg, P., Ortmann, M., Berthold, F., Peifer, M., Büttner, R., Westermann, F., … Fischer, M. (2023). Genomic ALK alterations in primary and relapsed neuroblastoma. British Journal of Cancer, 128(8), 1559–1571. https://doi.org/10.1038/s41416-023-02208-y
61. Pastorino, F., Capasso, M., Brignole, C., Lasorsa, V. A., Bensa, V., Perri, P., Cantalupo, S., Giglio, S., Provenzi, M., Rabusin, M., Pota, E., Cellini, M., Tondo, A., De Ioris, M. A., Sementa, A. R., Garaventa, A., Ponzoni, M., , Amoroso, L. (2023). Therapeutic targeting of alk in neuroblastoma: Experience of italian precision medicine in paediatric oncology. Cancers, 15(3), 560. https://doi.org/10.3390/cancers15030560
62. Ardini, E., Magnaghi, P., Orsini, P., Galvani, A., , Menichincheri, M. (2010). Anaplastic Lymphoma Kinase: Role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Letters, 299(2), 81–94. https://doi.org/10.1016/j.canlet.2010.09.001
63. Minuti, G., D’Incecco, A., Landi, L., , Cappuzzo, F. (2014). Protein kinase inhibitors to treat non-small-cell lung cancer. Expert Opinion on Pharmacotherapy, 15(9), 1203–1213. https://doi.org/10.1517/14656566.2014.909412
64. Ulivi, P., Zoli, W., Capelli, L., Chiadini, E., Calistri, D., Amadori, D. (2013). Target therapy in NSCLC patients: Relevant clinical agents and tumour molecular characterisation. Molecular and Clinical Oncology, 1(4), 575–581. https://doi.org/10.3892/mco.2013.100
65. Berko, E. R., Witek, G. M., Matkar, S., Petrova, Z. O., Wu, M. A., Smith, C. M., Daniels, A., Kalna, J., Kennedy, A., Gostuski, I., Casey, C., Krytska, K., Gerelus, M., Pavlick, D., Ghazarian, S., Park, J. R., Marachelian, A., Maris, J. M., Goldsmith, K. C., … Mossé, Y. P. (2023). Circulating tumour DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nature Communications, 14(1), 2601. https://doi.org/10.1038/s41467-023-38195-0
66. Tucker, E. R., Jiménez, I., Chen, L., Bellini, A., Gorrini, C., Calton, E., Gao, Q., Che, H., Poon, E., Jamin, Y., Martins Da Costa, B., Barker, K., Shrestha, S., Hutchinson, J. C., Dhariwal, S., Goodman, A., Del Nery, E., Gestraud, P., Bhalshankar, J., Schleiermacher, G. (2023). Combination therapies targeting alk-aberrant neuroblastoma in preclinical models. Clinical Cancer Research, 29(7), 1317–1331. https://doi.org/10.1158/1078-0432.CCR-22-2274
67. Fiala, K., Amos, L., , D’Andrea, L. (2023). 0994 neuroblastoma as the initial manifestation of familial phox2b nparm positive congenital central hypoventilation syndrome. SLEEP, 46(Supplement_1), A438–A438. https://doi.org/10.1093/sleep/zsad077.0994
68. Bachetti, T., , Ceccherini, I. (2020). Causative and common PHOX2B variants define a broad phenotypic spectrum. Clinical Genetics, 97(1), 103–113. https://doi.org/10.1111/cge.13633
69. Zanni, E. D., Bianchi, G., Ravazzolo, R., Raffaghello, L., Ceccherini, I., , Bachetti, T. (2017). Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth. Oncotarget, 8(42), 72133–72146. https://doi.org/10.18632/oncotarget.19922
70. Grèze, V., Kanold, J., Chambon, F., Halle, P., Gremeau, A.-S., Rives, N., Rouel, N., Pereira, B., Tchirkov, A., , Brugnon, F. (2017). RT-qPCR for PHOX2B mRNA is a highly specific and sensitive method to assess neuroblastoma minimal residual disease in testicular tissue. Oncology Letters, 14(1), 860–866. https://doi.org/10.3892/ol.2017.6238
71. Henrich, K.-O., Bender, S., Saadati, M., Dreidax, D., Gartlgruber, M., Shao, C., Herrmann, C., Wiesenfarth, M., Parzonka, M., Wehrmann, L., Fischer, M., Duffy, D. J., Bell, E., Torkov, A., Schmezer, P., Plass, C., Höfer, T., Benner, A., Pfister, S. M., , Westermann, F. (2023, March 30). Data from integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas. American Association for Cancer Research. https://doi.org/10.1158/0008-5472.c.6507639
72. Rada-Iglesias, A., Bajpai, R., Prescott, S., Brugmann, S. A., Swigut, T., , Wysocka, J. (2012). Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell, 11(5), 633–648. https://doi.org/10.1016/j.stem.2012.07.006
73. Chennakesavalu, M., Moore, K., Chaves, G., Veeravalli, S., TerHaar, R., Wu, T., Lyu, R., Chlenski, A., He, C., Piunti, A., , Applebaum, M. A. (2023). 5-hydroxymethylcytosine profiling of cell-free DNA identifies bivalent genes that are prognostic of survival in high-risk neuroblastoma. https://doi.org/10.1101/2023.04.27.538309
74. Feils, A., Frankel, L., Shahi (De), A., Hampton, A., Sondel, P., Erbe, A. (2022). 1113 Epigenetic modifications influence immune regulatory pathways in murine and human neuroblastoma and melanoma tumour models. Regular and Young Investigator Award Abstracts, A1156–A1156. https://doi.org/10.1136/jitc-2022-SITC2022.1113
75. Cornel, A. M., Dunnebach, E., Hofman, D. A., Das, S., Sengupta, S., Van Den Ham, F., Wienke, J., Strijker, J. G. M., Van Den Beemt, D. A. M. H., Essing, A. H. W., Koopmans, B., Engels, S. A. G., Lo Presti, V., Szanto, C. S., George, R. E., Molenaar, J. J., Van Heesch, S., Dierselhuis, M. P., , Nierkens, S. (2022). Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumour-cell lineage switch. Journal for ImmunoTherapy of Cancer, 10(12), e005002. https://doi.org/10.1136/jitc-2022-005002
76. Van Gerven, M. R., Schild, L., Van Arkel, J., Koopmans, B., Broeils, L. A., Meijs, L. A. M., Van Oosterhout, R., Van Noesel, M. M., Koster, J., Van Hooff, S. R., Molenaar, J. J., , Van Den Boogaard, M. (2022). Two opposing gene expression patterns within ATRX aberrant neuroblastoma. https://doi.org/10.1101/2022.10.25.513663
77. Van Gerven, M. R., Schild, L., Van Arkel, J., Koopmans, B., Broeils, L. A., Meijs, L. A. M., Van Oosterhout, R., Van Noesel, M. M., Koster, J., Van Hooff, S. R., Molenaar, J. J., , Van Den Boogaard, M. L. (2023). Two opposing gene expression patterns within ATRX aberrant neuroblastoma. PLOS ONE, 18(8), e0289084. https://doi.org/10.1371/journal.pone.0289084
78. Zeineldin, M., Federico, S., Chen, X., Fan, Y., Xu, B., Stewart, E., Zhou, X., Jeon, J., Griffiths, L., Nguyen, R., Norrie, J., Easton, J., Mulder, H., Yergeau, D., Liu, Y., Wu, J., Van Ryn, C., Naranjo, A., Hogarty, M. D., … Dyer, M. A. (2020). MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nature Communications, 11(1), 913. https://doi.org/10.1038/s41467-020-14682-6
79. Pang, Y., Chen, X., Ji, T., Cheng, M., Wang, R., Zhang, C., Liu, M., Zhang, J., , Zhong, C. (2023). The chromatin remodeler atrx: Role and mechanism in biology and cancer. Cancers, 15(8), 2228. https://doi.org/10.3390/cancers15082228
80. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T. T., Valastyan, S., Westermann, F., Speleman, F., Vandesompele, J., , Weinberg, R. A. (2010). Mir-9, a myc/mycn-activated microrna, regulates e-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256. https://doi.org/10.1038/ncb2024
81. Molenaar, J. J., Domingo-Fernández, R., Ebus, M. E., Lindner, S., Koster, J., Drabek, K., Mestdagh, P., Van Sluis, P., Valentijn, L. J., Van Nes, J., Broekmans, M., Haneveld, F., Volckmann, R., Bray, I., Heukamp, L., Sprüssel, A., Thor, T., Kieckbusch, K., Klein-Hitpass, L., Schulte, J. H. (2012). LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics, 44(11), 1199–1206. https://doi.org/10.1038/ng.2436
82. Mestdagh, P., Boström, A.-K., Impens, F., Fredlund, E., Van Peer, G., De Antonellis, P., Von Stedingk, K., Ghesquière, B., Schulte, S., Dews, M., Thomas-Tikhonenko, A., Schulte, J. H., Zollo, M., Schramm, A., Gevaert, K., Axelson, H., Speleman, F., Vandesompele, J. (2010). The mir-17-92 microrna cluster regulates multiple components of the tgf-β pathway in neuroblastoma. Molecular Cell, 40(5), 762–773. https://doi.org/10.1016/j.molcel.2010.11.038
83. Hamilton, M. P., Rajapakshe, K., Hartig, S. M., Reva, B., McLellan, M. D., Kandoth, C., Ding, L., Zack, T. I., Gunaratne, P. H., Wheeler, D. A., Coarfa, C., , McGuire, S. E. (2013). Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nature Communications, 4(1), 2730. https://doi.org/10.1038/ncomms3730
84. Peinemann, F., Van Dalen, E., Berthold, F. (2016). Rapid cojec induction therapy for high-risk neuroblastoma patients – cochrane review. Klinische Pädiatrie, 228(03), 130–134. https://doi.org/10.1055/s-0042-103158
85. Von Allmen, D., Davidoff, A. M., London, W. B., Van Ryn, C., Haas-Kogan, D. A., Kreissman, S. G., Khanna, G., Rosen, N., Park, J. R., , La Quaglia, M. P. (2017). Impact of extent of resection on local control and survival in patients from the cog a3973 study with high-risk neuroblastoma. Journal of Clinical Oncology, 35(2), 208–216. https://doi.org/10.1200/JCO.2016.67.2642
86. Barr, E. K., Laurie, K., Wroblewski, K., Applebaum, M. A., , Cohn, S. L. (2020). Association between end‐induction response according to the revised International Neuroblastoma Response Criteria (Inrc) and outcome in high‐risk neuroblastoma patients. Paediatric Blood , Cancer, 67(10), e28390. https://doi.org/10.1002/pbc.28390
87. Holmes, K., Pötschger, U., Pearson, A. D. J., Sarnacki, S., Cecchetto, G., Gomez-Chacon, J., Squire, R., Freud, E., Bysiek, A., Matthyssens, L. E., Metzelder, M., Monclair, T., Stenman, J., Rygl, M., Rasmussen, L., Joseph, J.-M., Irtan, S., Avanzini, S., Godzinski, J., for the International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN). (2020). Influence of surgical excision on the survival of patients with stage 4 high-risk neuroblastoma: A report from the hr-nbl1/siopen study. Journal of Clinical Oncology, 38(25), 2902–2915. https://doi.org/10.1200/JCO.19.03117
88. Kreissman, S. G., Seeger, R. C., Matthay, K. K., London, W. B., Sposto, R., Grupp, S. A., Haas-Kogan, D. A., LaQuaglia, M. P., Yu, A. L., Diller, L., Buxton, A., Park, J. R., Cohn, S. L., Maris, J. M., Reynolds, C. P., , Villablanca, J. G. (2013). Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (Cog a3973): A randomised phase 3 trial. The Lancet Oncology, 14(10), 999–1008. https://doi.org/10.1016/S1470-2045(13)70309-7
89. Federico, S. M., Naranjo, A., Zhang, F., Marachelian, A., Desai, A. V., Shimada, H., Braunstein, S. E., Tinkle, C. L., Yanik, G. A., Asgharzadeh, S., Sondel, P. M., Yu, A. L., Acord, M., Parisi, M. T., Shulkin, B. L., DuBois, S. G., Bagatell, R., Park, J. R., Furman, W. L., , Shusterman, S. (2022). A pilot induction regimen incorporating dinutuximab and sargramostim for the treatment of newly diagnosed high-risk neuroblastoma: A report from the Children’s Oncology Group. Journal of Clinical Oncology, 40(16_suppl), 10003–10003. https://doi.org/10.1200/JCO.2022.40.16_suppl.10003
90. Furman, W. L., McCarville, B., Shulkin, B. L., Davidoff, A., Krasin, M., Hsu, C.-W., Pan, H., Wu, J., Brennan, R., Bishop, M. W., Helmig, S., Stewart, E., Navid, F., Triplett, B., Santana, V., Santiago, T., Hank, J. A., Gillies, S. D., Yu, A., … Federico, S. M. (2022). Improved outcome in children with newly diagnosed high-risk neuroblastoma treated with chemoimmunotherapy: Updated results of a phase ii study using hu14. 18k322a. Journal of Clinical Oncology, 40(4), 335–344. https://doi.org/10.1200/JCO.21.01375
91. Ryan, A. L., Akinkuotu, A., Pierro, A., Morgenstern, D. A., Irwin, M. S. (2020). The role of surgery in high-risk neuroblastoma. Journal of Paediatric Hematology/Oncology, 42(1), 1–7. https://doi.org/10.1097/MPH.0000000000001607
92. Casey, D. L., Kushner, B. H., Cheung, N.-K. V., Modak, S., LaQuaglia, M. P., , Wolden, S. L. (2016). Local control with 21-gy radiation therapy for high-risk neuroblastoma. International Journal of Radiation Oncology*Biology*Physics, 96(2), 393–400. https://doi.org/10.1016/j.ijrobp.2016.05.020
93. Liu, K. X., Naranjo, A., Zhang, F. F., DuBois, S. G., Braunstein, S. E., Voss, S. D., Khanna, G., London, W. B., Doski, J. J., Geiger, J. D., Kreissman, S. G., Grupp, S. A., Diller, L. R., Park, J. R., , Haas-Kogan, D. A. (2020). Prospective evaluation of radiation dose escalation in patients with high-risk neuroblastoma and gross residual disease after surgery: A report from the children’s oncology group anbl0532 study. Journal of Clinical Oncology, 38(24), 2741–2752. https://doi.org/10.1200/JCO.19.03316
94. Casey, D. L., Kushner, B. H., Cheung, N.-K. V., Modak, S., Basu, E. M., Roberts, S. S., LaQuaglia, M. P., , Wolden, S. L. (2019). Reduced-dose radiation therapy to the primary site is effective for high-risk neuroblastoma: Results from a prospective trial. International Journal of Radiation Oncology *Biology*Physics, 104(2), 409–414. https://doi.org/10.1016/j.ijrobp.2019.02.004
95. Yu, A. L., Gilman, A. L., Ozkaynak, M. F., Naranjo, A., Diccianni, M. B., Gan, J., Hank, J. A., Batova, A., London, W. B., Tenney, S. C., Smith, M., Shulkin, B. L., Parisi, M., Matthay, K. K., Cohn, S. L., Maris, J. M., Bagatell, R., Park, J. R., , Sondel, P. M. (2021). Long-term follow-up of a phase iii study of ch14. 18(Dinutuximab) + cytokine immunotherapy in children with high-risk neuroblastoma: Cog study anbl0032. Clinical Cancer Research, 27(8), 2179–2189. https://doi.org/10.1158/1078-0432.CCR-20-3909
96. Ladenstein, R., Pötschger, U., Valteau-Couanet, D., Luksch, R., Castel, V., Yaniv, I., Laureys, G., Brock, P., Michon, J. M., Owens, C., Trahair, T., Chan, G. C. F., Ruud, E., Schroeder, H., Beck Popovic, M., Schreier, G., Loibner, H., Ambros, P., Holmes, K., … Lode, H. N. (2018). Interleukin 2 with anti-GD2 antibody ch14.18/CHO (Dinutuximab beta) in patients with high-risk neuroblastoma (Hr-nbl1/siopen): A multicentre, randomised, phase 3 trial. The Lancet Oncology, 19(12), 1617–1629. https://doi.org/10.1016/S1470-2045(18)30578-3
97. Kushner, B. H., Cheung, I. Y., Modak, S., Kramer, K., Ragupathi, G., , Cheung, N.-K. V. (2014). Phase i trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clinical Cancer Research, 20(5), 1375–1382. https://doi.org/10.1158/1078-0432.CCR-13-1012
98. Kushner, B. H., Cheung, I. Y., Modak, S., Basu, E. M., Roberts, S. S., , Cheung, N.-K. (2018). Humanized 3f8 anti-gd2 monoclonal antibody dosing with granulocyte-macrophage colony-stimulating factor in patients with resistant neuroblastoma: A phase 1 clinical trial. JAMA Oncology, 4(12), 1729. https://doi.org/10.1001/jamaoncol.2018.4005
99. Park, J. R., Kreissman, S. G., London, W. B., Naranjo, A., Cohn, S. L., Hogarty, M. D., Tenney, S. C., Haas-Kogan, D., Shaw, P. J., Kraveka, J. M., Roberts, S. S., Geiger, J. D., Doski, J. J., Voss, S. D., Maris, J. M., Grupp, S. A., , Diller, L. (2019). Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: A randomized clinical trial. JAMA, 322(8), 746. https://doi.org/10.1001/jama.2019.11642
100. London, W. B., Bagatell, R., Weigel, B. J., Fox, E., Guo, D., Van Ryn, C., Naranjo, A., , Park, J. R. (2017). Historical time to disease progression and progression‐free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on Children’s Oncology Group early‐phase trials. Cancer, 123(24), 4914–4923. https://doi.org/10.1002/cncr.30934
101. Wilson, J. S., Gains, J. E., Moroz, V., Wheatley, K., , Gaze, M. N. (2014). A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. European Journal of Cancer, 50(4), 801–815. https://doi.org/10.1016/j.ejca.2013.11.016
102. Krystal, J., , Foster, J. H. (2023). Treatment of high-risk neuroblastoma. Children, 10(8), 1302. https://doi.org/10.3390/children10081302
103. Chen, Y., Takita, J., Choi, Y. L., Kato, M., Ohira, M., Sanada, M., Wang, L., Soda, M., Kikuchi, A., Igarashi, T., Nakagawara, A., Hayashi, Y., Mano, H., , Ogawa, S. (2008). Oncogenic mutations of ALK kinase in neuroblastoma. Nature, 455(7215), 971–974. https://doi.org/10.1038/nature07399
104. Johnsen, J. I., Dyberg, C., Fransson, S., , Wickström, M. (2018). Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 131, 164–176. https://doi.org/10.1016/j.phrs.2018.02.023
105. Mossé, Y. P., Lim, M. S., Voss, S. D., Wilner, K., Ruffner, K., Laliberte, J., Rolland, D., Balis, F. M., Maris, J. M., Weigel, B. J., Ingle, A. M., Ahern, C., Adamson, P. C., , Blaney, S. M. (2013). Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: A Children’s Oncology Group phase 1 consortium study. The Lancet. Oncology, 14(6), 472–480. https://doi.org/10.1016/S1470-2045(13)70095-0
106. Bresler, S. C., Wood, A. C., Haglund, E. A., Courtright, J., Belcastro, L. T., Plegaria, J. S., Cole, K., Toporovskaya, Y., Zhao, H., Carpenter, E. L., Christensen, J. G., Maris, J. M., Lemmon, M. A., , Mossé, Y. P. (2011). Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Science Translational Medicine, 3(108), 108ra114. https://doi.org/10.1126/scitranslmed.3002950
107. Applebaum, M. A., Desai, A. V., Glade Bender, J. L., , Cohn, S. L. (2017). Emerging and investigational therapies for neuroblastoma. Expert Opinion on Orphan Drugs, 5(4), 355–368. https://doi.org/10.1080/21678707.2017.1304212
108. Ho, R., Eggert, A., Hishiki, T., Minturn, J. E., Ikegaki, N., Foster, P., Camoratto, A. M., Evans, A. E., , Brodeur, G. M. (2002). Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Research, 62(22), 6462–6466.
109. Iyer, R., Wehrmann, L., Golden, R. L., Naraparaju, K., Croucher, J. L., MacFarland, S. P., Guan, P., Kolla, V., Wei, G., Cam, N., Li, G., Hornby, Z., , Brodeur, G. M. (2016). Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Letters, 372(2), 179–186. https://doi.org/10.1016/j.canlet.2016.01.018
110. Guan, J., Tucker, E. R., Wan, H., Chand, D., Danielson, L. S., Ruuth, K., El Wakil, A., Witek, B., Jamin, Y., Umapathy, G., Robinson, S. P., Johnson, T. W., Smeal, T., Martinsson, T., Chesler, L., Palmer, R. H., , Hallberg, B. (2016). The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Disease Models, Mechanisms, 9(9), 941–952. https://doi.org/10.1242/dmm.024448
111. Wood, A. C., Krytska, K., Ryles, H. T., Infarinato, N. R., Sano, R., Hansel, T. D., Hart, L. S., King, F. J., Smith, T. R., Ainscow, E., Grandinetti, K. B., Tuntland, T., Kim, S., Caponigro, G., He, Y. Q., Krupa, S., Li, N., Harris, J. L., , Mossé, Y. P. (2017). Dual alk and cdk4/6 inhibition demonstrates synergy against neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23(11), 2856–2868. https://doi.org/10.1158/1078-0432.CCR-16-1114
112. Brodeur, G. M., Minturn, J. E., Ho, R., Simpson, A. M., Iyer, R., Varela, C. R., Light, J. E., Kolla, V., , Evans, A. E. (2009). Trk receptor expression and inhibition in neuroblastomas. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(10), 3244–3250. https://doi.org/10.1158/1078-0432.CCR-08-1815
113. Barone, G., Anderson, J., Pearson, A. D. J., Petrie, K., Chesler, L. (2013). New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(21), 5814–5821. https://doi.org/10.1158/1078-0432.CCR-13-0680
114. Soucek, L., Whitfield, J., Martins, C. P., Finch, A. J., Murphy, D. J., Sodir, N. M., Karnezis, A. N., Swigart, L. B., Nasi, S., , Evan, G. I. (2008). Modelling Myc inhibition as a cancer therapy. Nature, 455(7213), 679–683. https://doi.org/10.1038/nature07260
115. Puissant, A., Frumm, S. M., Alexe, G., Bassil, C. F., Qi, J., Chanthery, Y. H., Nekritz, E. A., Zeid, R., Gustafson, W. C., Greninger, P., Garnett, M. J., McDermott, U., Benes, C. H., Kung, A. L., Weiss, W. A., Bradner, J. E., , Stegmaier, K. (2013). Targeting mycn in neuroblastoma by bet bromodomain inhibition. Cancer Discovery, 3(3), 308–323. https://doi.org/10.1158/2159-8290.CD-12-0418
116. Junwei, S., , Vakoc, C. R. (2014). The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular Cell, 54(5), 728–736. https://doi.org/10.1016/j.molcel.2014.05.016
117. Jiménez, I., Baruchel, A., Doz, F., , Schulte, J. (2017). Bromodomain and extraterminal protein inhibitors in paediatrics: A review of the literature. Paediatric Blood, Cancer, 64(5), e26334. https://doi.org/10.1002/pbc.26334
118. Richards, M. W., Burgess, S. G., Poon, E., Carstensen, A., Eilers, M., Chesler, L., , Bayliss, R. (2016). Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13726–13731. https://doi.org/10.1073/pnas.1610626113
119. DuBois, S. G., Marachelian, A., Fox, E., Kudgus, R. A., Reid, J. M., Groshen, S., Malvar, J., Bagatell, R., Wagner, L., Maris, J. M., Hawkins, R., Courtier, J., Lai, H., Goodarzian, F., Shimada, H., Czarnecki, S., Tsao-Wei, D., Matthay, K. K., , Mosse, Y. P. (2016). Phase i study of the aurora a kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: A nant (New approaches to neuroblastoma therapy) trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 34(12), 1368–1375. https://doi.org/10.1200/JCO.2015.65.4889
120. Vaughan, L., Clarke, P. A., Barker, K., Chanthery, Y., Gustafson, C. W., Tucker, E., Renshaw, J., Raynaud, F., Li, X., Burke, R., Jamin, Y., Robinson, S. P., Pearson, A., Maira, M., Weiss, W. A., Workman, P., Chesler, L. (2016). Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumours. Oncotarget, 7(36), 57525–57544. https://doi.org/10.18632/oncotarget.10544
121. Kushner, B. H., Cheung, N.-K. V., Modak, S., Becher, O. J., Basu, E. M., Roberts, S. S., Kramer, K., , Dunkel, I. J. (2017). A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: Long-term progression-free survival of patients with resistant neuroblastoma. International Journal of Cancer, 140(2), 480–484. https://doi.org/10.1002/ijc.30440
122. Hogarty, M. D., Norris, M. D., Davis, K., Liu, X., Evageliou, N. F., Hayes, C. S., Pawel, B., Guo, R., Zhao, H., Sekyere, E., Keating, J., Thomas, W., Cheng, N. C., Murray, J., Smith, J., Sutton, R., Venn, N., London, W. B., Buxton, A., Haber, M. (2008). ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Research, 68(23), 9735–9745. https://doi.org/10.1158/0008-5472.CAN-07-6866
123. Schleiermacher, G., Javanmardi, N., Bernard, V., Leroy, Q., Cappo, J., Rio Frio, T., Pierron, G., Lapouble, E., Combaret, V., Speleman, F., de Wilde, B., Djos, A., Ora, I., Hedborg, F., Träger, C., Holmqvist, B.-M., Abrahamsson, J., Peuchmaur, M., Michon, J., Martinsson, T. (2014). Emergence of new ALK mutations at relapse of neuroblastoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 32(25), 2727–2734. https://doi.org/10.1200/JCO.2013.54.0674
124. Tanaka, T., Higashi, M., Kimura, K., Wakao, J., Fumino, S., Iehara, T., Hosoi, H., Sakai, T., , Tajiri, T. (2016). MEK inhibitors as a novel therapy for neuroblastoma: Their in vitro effects and predicting their efficacy. Journal of Paediatric Surgery, 51(12), 2074–2079. https://doi.org/10.1016/j.jpedsurg.2016.09.043
125. Hart, L. S., Rader, J., Raman, P., Batra, V., Russell, M. R., Tsang, M., Gagliardi, M., Chen, L., Martinez, D., Li, Y., Wood, A., Kim, S., Parasuraman, S., Delach, S., Cole, K. A., Krupa, S., Boehm, M., Peters, M., Caponigro, G., , Maris, J. M. (2017). Preclinical therapeutic synergy of mek1/2 and cdk4/6 inhibition in neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23(7), 1785–1796. https://doi.org/10.1158/1078-0432.CCR-16-1131
126. Umapathy, G., Guan, J., Gustafsson, D. E., Javanmardi, N., Cervantes-Madrid, D., Djos, A., Martinsson, T., Palmer, R. H., , Hallberg, B. (2017). MEK inhibitor trametinib does not prevent the growth of anaplastic lymphoma kinase (Alk)-addicted neuroblastomas. Science Signaling, 10(507), eaam 7550. https://doi.org/10.1126/scisignal.aam7550
127. Eleveld TF, Vernooij L, Schild L, et al. MEK inhibition causes BIM stabilization and increased sensitivity to BCL-2 family member inhibitors in RAS-MAPK-mutated neuroblastoma. Front Oncol. 2023;13:1130034. Published 2023 Feb 21. doi:10.3389/fonc.2023.1130034
128. ClinicalTrials.gov. Arsenic Trioxide, Trametinib, and Chemotherapy for Pediatric Patients with Relapsed or Stage M Neuroblastoma. NCT06933394. Updated May 2024. https://clinicaltrials.gov/study/NCT06933394
129. Fleuren, E. D. G., Roeffen, M. H. S., Leenders, W. P., Flucke, U. E., Vlenterie, M., Schreuder, H. W., Boerman, O. C., van der Graaf, W. T. A., , Versleijen-Jonkers, Y. M. H. (2013). Expression and clinical relevance of MET and ALK in Ewing sarcomas. International Journal of Cancer, 133(2), 427–436. https://doi.org/10.1002/ijc.28047
130. Croucher, J. L., Iyer, R., Li, N., Molteni, V., Loren, J., Gordon, W. P., Tuntland, T., Liu, B., , Brodeur, G. M. (2015). TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemotherapy and Pharmacology, 75(1), 131–141. https://doi.org/10.1007/s00280-014-2627-1
131. Li, Z., Zhang, Y., Tong, Y., Tong, J., , Thiele, C. J. (2015). Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biology, Therapy, 16(3), 477–483. https://doi.org/10.1080/15384047.2015.1016659
132. Wickström, M., Dyberg, C., Shimokawa, T., Milosevic, J., Baryawno, N., Fuskevåg, O. M., Larsson, R., Kogner, P., Zaphiropoulos, P. G., Johnsen, J. I. (2013). Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. International Journal of Cancer, 132(7), 1516–1524. https://doi.org/10.1002/ijc.27820
133. Swarbrick, A., Woods, S. L., Shaw, A., Balakrishnan, A., Phua, Y., Nguyen, A., Chanthery, Y., Lim, L., Ashton, L. J., Judson, R. L., Huskey, N., Blelloch, R., Haber, M., Norris, M. D., Lengyel, P., Hackett, C. S., Preiss, T., Chetcuti, A., Sullivan, C. S., … Goga, A. (2010). Mir-380-5p represses p53 to control cellular survival and is associated with poor outcome in mycn-amplified neuroblastoma. Nature Medicine, 16(10), 1134–1140. https://doi.org/10.1038/nm.2227
134. Veschi, V., Thiele, C. J. (2017). High-SETD8 inactivates p53 in neuroblastoma. Oncoscience, 4(3–4), 21–22. https://doi.org/10.18632/oncoscience.344
135. Van Goethem, A., Yigit, N., Moreno-Smith, M., Vasudevan, S. A., Barbieri, E., Speleman, F., Shohet, J., Vandesompele, J., , Van Maerken, T. (2017). Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma. Oncotarget, 8(34), 57047–57057. https://doi.org/10.18632/oncotarget.18982
136. Van Maerken, T., Ferdinande, L., Taildeman, J., Lambertz, I., Yigit, N., Vercruysse, L., Rihani, A., Michaelis, M., Cinatl, J., Cuvelier, C. A., Marine, J.-C., De Paepe, A., Bracke, M., Speleman, F., Vandesompele, J. (2009). Antitumour activity of the selective mdm2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. JNCI: Journal of the National Cancer Institute, 101(22), 1562–1574. https://doi.org/10.1093/jnci/djp355
137. Mosse, Y. P., Diskin, S. J., Wasserman, N., Rinaldi, K., Attiyeh, E. F., Cole, K., Jagannathan, J., Bhambhani, K., Winter, C., , Maris, J. M. (2007). Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes, Chromosomes and Cancer, 46(10), 936–949. https://doi.org/10.1002/gcc.20477
138. Rader, J., Russell, M. R., Hart, L. S., Nakazawa, M. S., Belcastro, L. T., Martinez, D., Li, Y., Carpenter, E. L., Attiyeh, E. F., Diskin, S. J., Kim, S., Parasuraman, S., Caponigro, G., Schnepp, R. W., Wood, A. C., Pawel, B., Cole, K. A., Maris, J. M. (2013). Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(22), 6173–6182. https://doi.org/10.1158/1078-0432.CCR-13-1675
139. Castle, V. P., Heidelberger, K. P., Bromberg, J., Ou, X., Dole, M., , Nuñez, G. (1993). Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. The American Journal of Pathology, 143(6), 1543–1550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887263/
140. Voges, Y., Michaelis, M., Rothweiler, F., Schaller, T., Schneider, C., Politt, K., Mernberger, M., Nist, A., Stiewe, T., Wass, M. N., Rödel, F., , Cinatl, J. (2016). Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance. Cell Death, Disease, 7(10), e2410–e2410. https://doi.org/10.1038/cddis.2016.257
141. Hagenbuchner, J., Kiechl-Kohlendorfer, U., Obexer, P., Ausserlechner, M. J. (2016). BIRC5/Survivin as a target for glycolysis inhibition in high-stage neuroblastoma. Oncogene, 35(16), 2052–2061. https://doi.org/10.1038/onc.2015.264
142. Dawson, M. A.,K ouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12–27. https://doi.org/10.1016/j.cell.2012.06.013
143. Rettig, I., Koeneke, E., Trippel, F., Mueller, W. C., Burhenne, J., Kopp-Schneider, A., Fabian, J., Schober, A., Fernekorn, U., Von Deimling, A., Deubzer, H. E., Milde, T., Witt, O., Oehme, I. (2015). Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death, Disease, 6(2), e1657–e1657. https://doi.org/10.1038/cddis.2015.24
144. Fouladi, M., Park, J. R., Stewart, C. F., Gilbertson, R. J., Schaiquevich, P., Sun, J., Reid, J. M., Ames, M. M., Speights, R., Ingle, A. M., Zwiebel, J., Blaney, S. M., , Adamson, P. C. (2010). Paediatric phase i trial and pharmacokinetic study of vorinostat: A children’s oncology group phase i consortium report. Journal of Clinical Oncology, 28(22), 3623–3629. https://doi.org/10.1200/JCO.2009.25.9119
145. Muscal, J. A., Thompson, P. A., Horton, T. M., Ingle, A. M., Ahern, C. H., McGovern, R. M., Reid, J. M., Ames, M. M., Espinoza‐Delgado, I., Weigel, B. J., , Blaney, S. M. (2013). A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumours: A Children’s Oncology Group phase I consortium study (Advl0916). Paediatric Blood Cancer, 60(3), 390–395. https://doi.org/10.1002/pbc.24271
146. DuBois, S. G., Groshen, S., Park, J. R., Haas-Kogan, D. A., Yang, X., Geier, E., Chen, E., Giacomini, K., Weiss, B., Cohn, S. L., Granger, M. M., Yanik, G. A., Hawkins, R., Courtier, J., Jackson, H., Goodarzian, F., Shimada, H., Czarnecki, S., Tsao-Wei, D., … Matthay, K. K. (2015). Phase i study of vorinostat as a radiation sensitizer with 131i-metaiodobenzylguanidine (131i-mibg) for patients with relapsed or refractory neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(12), 2715–2721. https://doi.org/10.1158/1078-0432.CCR-14-3240
147. Rubio, P. M., Galán, V., Rodado, S., Plaza, D., , Martínez, L. (2020). MIBG therapy for neuroblastoma: precision achieved with dosimetry, and concern for false responders. Frontiers in Medicine, 7, 173. https://doi.org/10.3389/fmed.2020.00173
148. Siebert, N., Zumpe, M., Jüttner, M., Troschke-Meurer, S., , Lode, H. N. (2017). PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD2 antibody ch14.18/CHO. OncoImmunology, 6(10), e1343775. https://doi.org/10.1080/2162402X.2017.1343775
149. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., Huls, M. H., Liu, E., Gee, A. P., Mei, Z., Yvon, E., Weiss, H. L., Liu, H., Rooney, C. M., Heslop, H. E., , Brenner, M. K. (2008). Virus-specific T cells engineered to coexpress tumour-specific receptors: Persistence and antitumour activity in individuals with neuroblastoma. Nature Medicine, 14(11), 1264–1270. https://doi.org/10.1038/nm.1882
150. Carlson, L.-M., Rasmuson, A., Idborg, H., Segerström, L., Jakobsson, P.-J., Sveinbjörnsson, B., , Kogner, P. (2013). Low-dose aspirin delays an inflammatory tumour progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis, 34(5), 1081–1088. https://doi.org/10.1093/carcin/bgt009
151. Lau, L., Hansford, L. M., Cheng, L. S., Hang, M., Baruchel, S., Kaplan, D. R., , Irwin, M. S. (2007). Cyclooxygenase inhibitors modulate the p53/HDM2 pathway and enhance chemotherapy-induced apoptosis in neuroblastoma. Oncogene, 26(13), 1920–1931. https://doi.org/10.1038/sj.onc.1209981