Improper Curing of 3D Printed Restorations and Intraoral Degradation: Microplastic Release Health Risks and the Role of Oxygen-Free Polymerisation
Main Article Content
Abstract
Three-dimensional (3D) printing technology has significantly revolutionised the field of restorative dentistry by facilitating the remarkably swift and highly accurate production of customised dental restorations tailored to meet individual patient needs and specifications. Nevertheless, a growing body of evidence increasingly underscores the presence of substantial health risks that are associated with the intraoral degradation of resin-based materials that have not been appropriately cured during the manufacturing process. The phenomenon of incomplete polymerisation—often a consequence of factors such as oxygen inhibition, insufficient exposure to light, or the implementation of suboptimal curing protocols—results in the release of residual monomers and microplastics into the oral cavity, thereby raising serious concerns. These released substances are progressively being recognised as biologically active contaminants that possess the potential to induce a variety of adverse effects, including cytotoxicity, oxidative stress, endocrine disruption, and inflammatory responses that can impact both local tissues within the oral cavity and systemic tissues throughout the body. This comprehensive review aims to synthesise the most current research regarding the chemical and mechanical consequences that arise from inadequate curing processes, the biological pathways that are affected by the ingestion of microplastics and the leaching of monomers, and the broader implications this has for the long-term safety and well-being of patients undergoing such dental procedures. Various strategies that have been proposed—including oxygen-free polymerisation techniques, the use of optimised curing wavelengths (for example, at 385 nm), and the development of modified resin formulations—are discussed as potential means to effectively mitigate these significant health risks associated with dental materials. The findings presented in this review emphasise the pressing necessity for the establishment of standardised protocols and the pursuit of further research endeavours aimed at addressing the concealed health burden that is posed by the degradation of 3D printed dental restorations in the context of clinical dentistry. Ultimately, addressing these challenges will require a collaborative effort among researchers, clinicians, and manufacturers to enhance the safety and efficacy of dental materials in restorative practices.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Ali SS, Elsamahy T, Al-Tohamy R, et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Total Environ. 2021;780: 146590. doi:10.1016/j.scitotenv.2021.146590.
3. Ali SS, Elsamahy T, Koutra E, et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci Total Environ. 2021; 771:144719. doi:10.1016/j.scitotenv.2020.144719.
4. Alifui Segbaya F. Biomedical photopolymers in 3D printing. Rapid Prototyp J. 2019;26(2):437. doi:10.1108/rpj-10-2018-0268.
5. Alkaltham N, Aldhafiri R, Al Thobity AM, et al. Effect of denture disinfectants on the mechanical performance of 3D printed denture base materials. Polymers. 2023;15(5):1175. doi:10.3390/polym150 51175.
6. Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ. 2020;759:143536. doi:10.1016/j.scitotenv.2020.143536.
7. Beleges EM, Khurayzi TA, Dallak SA, et al. Applications of 3D printing in restorative dentistry: the present scenario. Saudi J Oral Dent Res. 2021; 6(1):15. doi:10.36348/sjodr.2021.v06i01.003.
8. Bona ÁD, Cantelli V, Britto VT, Collares K, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater. 2021;37(2):336. doi:10.1016/j.de ntal.2020.11.030.
9. Bora SS, Gogoi R, Sharma MR, et al. Microplastics and human health: unveiling the gut microbiome disruption and chronic disease risks. Front Cell Infect Microbiol. 2024;14. doi:10.3389/fcimb.2024.1492759.
10. Borges MG, Silva GR da, Neves FT, et al. Oxygen inhibition of surface composites and its correlation with degree of conversion and color stability. Braz Dent J. 2021;32(1):91. doi:10.1590/0103-6440202103641.
11. Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and microplastics: a recent perspective on associated mechanisms and influencing factors. Microorganisms. 2023;11(7):1661. doi:10.3390/mi croorganisms11071661.
12. Carr CM, Clarke DJ, Dobson ADW. Microbial polyethylene terephthalate hydrolases: current and future perspectives. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.571265.
13. Chaturvedi S, Alqahtani NM, Addas MK, Alfarsi MA. Marginal and internal fit of provisional crowns fabricated using 3D printing technology. Technol Health Care. 2020;28(6):635. doi:10.3233/thc-191964.
14. Covernton GA, Davies HL, Cox K, et al. A Bayesian analysis of the factors determining microplastics ingestion in fishes. J Hazard Mater. 2021;413: 125405. doi:10.1016/j.jhazmat.2021.125405.
15. Dai X, Xu Z, Li Z, Sun Y, Zhang S, Han B. Improving flexural properties of polymethyl methacrylate denture filled by carbon nanofibers under low filling content. Mater Res Express. 2021; 8(1):15404. doi:10.1088/2053-1591/abdd4f.
16. Dall’Oca S, Papacchini F, Goracci C, et al. Effect of oxygen inhibition on composite repair strength over time. J Biomed Mater Res B Appl Biomater. 2006;(2):493. doi:10.1002/jbm.b.30689.
17. Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. BDJ. 2015; 219(11):521. doi:10.1038/sj.bdj.2015.914.
18. Dhali SL, Parida D, Kumar B, Bala K. Recent trends in microbial and enzymatic plastic degradation: a solution for plastic pollution predicaments. Deleted J. 2024;1(1):[page number not available]. doi:10.118 6/s44316-024-00011-0.
19. Emenike EC, Okorie CJ, Ojeyemi T, et al. From oceans to dinner plates: the impact of microplastics on human health. Heliyon. 2023;9(10):e20440. doi:10.1016/j.heliyon.2023.e20440.
20. Feng L, Suh BI. Acrylic resins resisting oxygen inhibition during free radical photocuring. I. Formulation attributes. J Appl Polym Sci. 2009; 112(3):1565. doi:10.1002/app.29567.
21. Fugolin APP, Pfeifer CS. New resins for dental composites. J Dent Res. 2017;96(10):1085. doi:10.1177/0022034517720658.
22. Godoy V, Blázquez G, Calero M, Quesada L, Martín Lara MA. The potential of microplastics as carriers of metals. Environ Pollut. 2019;255:11 3363. doi:10.1016/j.envpol.2019.113363.
23. Gruber ES, Stadlbauer V, Pichler V, et al. To waste or not to waste: questioning potential health risks of micro- and nanoplastics with a focus on their ingestion and potential carcinogenicity. Exposure Health. 2022;15(1):33. doi:10.1007/s12403-022-00470-8.
24. Guzzetti E, Sureda A, Tejada S, Faggio C. Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol. 2018;64:164. doi:10.1016/j.etap.2018.10.009.
25. Hajjaj MS, Alamoudi RAA, Babeer WA, et al. Flexural strength, flexural modulus and microhardness of milled vs. fused deposition modeling printed zirconia; effect of conventional vs. speed sintering. BMC Oral Health. 2024;24(1):[page number not available]. doi:10.1186/s12903-023-03829-8.
26. Heris YS. Bacterial biodegradation of synthetic plastics: a review. Bull Natl Res Cent. 2024;48(1): [page number not available]. doi:10.1186/s42269-024-01241-y.
27. Ilie N. Degradation of dental methacrylate based composites in simulated clinical immersion media. J Funct Biomater. 2022;13(1):25. doi:10.3390/jfb13 010025.
28. Jiang J. Occurrence of microplastics and its pollution in the environment: a review. Sustain Prod Consump. 2017;13:16. doi:10.1016/j.spc.20 17.11.003.
29. John N, Salim R. Biodegradation of plastics by microbes a review. AIP Conf Proc. 2020;2263: 20003. doi:10.1063/5.0016828.
30. Kumar R, Manna C, Padha S, et al. Micro(nano)plastics pollution and human health: how plastics can induce carcinogenesis to humans? Chemosphere. 2022;298:134267. doi:10.1016/j.ch emosphere.2022.134267.
31. Lee YJ, Cho J, Sohn J, Kim C. Health effects of microplastic exposures: current issues and perspectives in South Korea. Yonsei Med J. 2023; 64(5):301. doi:10.3349/ymj.2023.0048.
32 Leggat PA, Kedjarune U. Toxicity of methyl methacrylate in dentistry. Int Dent J. 2003;53 (3):126. doi:10.1111/j.1875-595x.2003.tb00736.x.
33. Li Y, Tao L, Wang Q, Wang F, Li G, Song M. Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environ Health. 2023;1(4):249. doi:10.1021/envhealth.3c00052.
34. Mahran GA, El Banna A, El Korashy DI. Evaluation of a 3D printed nanohybrid resin composite versus a milled resin composite for flexural strength, wear and color stability. BMC Oral Health. 2025;25(1):[page number not available]. doi:10.1186/s12903-025-05861-2.
35. Marigo L, Nocca G, Fiorenzano G, et al. Influences of different air inhibition coatings on monomer release, microhardness, and color stability of two composite materials. Biomed Res Int. 2019; 2019:1. doi:10.1155/2019/4240264.
36. Martos J, Osinaga PWR, Oliveira E de, Castro LAS de. Hydrolytic degradation of composite resins: effects on the microhardness. Mater Res. 2003;6 (4):599. doi:10.1590/s1516-14392003000400029.
37. Microplastics are everywhere — we need to understand how they affect human health. Nat Med. 2024;30(4):913. doi:10.1038/s41591-024-02968-x.
38. Nisha M, Montazer Z, Sharma P, Levin DB. Microbial and enzymatic degradation of synthetic plastics. Front Microbiol. 2020;11. doi:10.3389/fmi cb.2020.580709.
39. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing—encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6. doi:10.3389/fbioe.2018.00172.
40. Oliveira J, Belchior A, Silva VD da, et al. Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Front Mar Sci. 2020;7. doi:10.3389/fm ars.2020.567126.
41. Panchal A, Asthana G. Oxygen inhibition layer: a dilemma to be solved. J Conserv Dent. 2020; 23(3):254. doi:10.4103/jcd.jcd_325_19.
42. Perea Lowery L, Gibreel M, Vallittu PK, Lassila L. 3D printed vs. heat polymerizing and autopolymerizing denture base acrylic resins. Materials. 2021;14(19):5781. doi:10.3390/ma1419 5781.
43. Pilapitiya PGCNT, Ratnayake AS. The world of plastic waste: a review. Cleaner Mater. 2024;11: 100220. doi:10.1016/j.clema.2024.100220.
44. Prata JC, Costa JP da, Lopes I, Andrady AL, Duarte AC, Rocha Santos T. A one health perspective of the impacts of microplastics on animal, human and environmental health. Sci Total Environ. 2021;777:146094. doi:10.1016/j.scitoten v.2021.146094.
45. Priya A, Dutta K, Daverey A. A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. J Chem Technol Biotechnol. 2021;97(2):381. doi:10.1002/j ctb.6675.
46. Rahiotis C, Zinelis S, Eliades G, Eliades T. Setting characteristics of a resin infiltration system for incipient caries treatment. J Dent. 2015;43(6): 715. doi:10.1016/j.jdent.2015.03.010.
47. Raszewski Z, Chojnacka K, Kulbacka J, Mikulewicz M. Mechanical properties and biocompatibility of 3D printing acrylic material with bioactive components. J Funct Biomater. 2022; 14(1):13. doi:10.3390/jfb14010013.
48. Robertson L, Phaneuf M, Haimeur A, Pesun IJ, França R. Degree of conversion and oxygen inhibited layer effect of three dental adhesives. Dent J. 2016; 4(4):37. doi:10.3390/dj4040037.
49. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.00442.
50. Salinas J, Carpena V, Martínez Gallardo MR, et al. Development of plastic degrading microbial consortia by induced selection in microcosms. Front Microbiol. 2023;14. doi:10.3389/fmicb.202 3.1143769.
51. Sharma RK, Kumari U, Kumar H. Impact of microplastics on pregnancy and fetal development: a systematic review. Cureus. Published online May 20, 2024. doi:10.7759/cureus.60712.
52. Shembish FA, Tong H, Kaizer MR, et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater. 2016;32(4):499. doi:10.1016/j.de ntal.2015.12.005.
53. shmi R, Kumar R, Pathak D. Approaches for enhancing microbial degradation of synthetic plastics: a review. Int J Curr Microbiol Appl Sci. 2020;9(1):910. doi:10.20546/ijcmas.2020.901.101.
54. Silva D da, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9. doi:10.1016/j.cej.2018.01.010.
55. Sridhar J, Govindaraju B, Michael JR, Viswanathan B. Impacts of micro and nanoplastics on human health. Bull Natl Res Cent. 2024;48(1) :[page number not available]. doi:10.1186/s42269-024-01268-1.
56. Stewart CA, Finer Y. Biostable, antidegradative and antimicrobial restorative systems based on host biomaterials and microbial interactions. Dent Mater. 2018;35(1):36. doi:10.1016/j.dental.2018.0 9.013.
57. Taki K, HAYASHI R, Taniguchi T, Tsuneishi A. Enhancement of dark polymerization by oxygen quenching during network formation in ultraviolet light induced radical polymerization of multifunctional monomers and reactive polymer. J Photopol Sci Technol. 2020;33(3):251. doi:10.249 4/photopolymer.33.251.
58. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci. 2009; 10(9):3722. doi:10.3390/ijms10093722.
59. Upendra S, Kaur J. Microplastic pollution in seawater: a review study. Nat Environ Pollut Technol. 2023;22(3):1635. doi:10.46488/nept.202 3.v22i03.050.
60. Vázquez OA, Rahman MS. An ecotoxicological approach to microplastics on terrestrial and aquatic organisms: a systematic review in assessment, monitoring and biological impact. Environ Toxicol Pharmacol. 2021;84:103615. doi:10.1016/j.etap.2 021.103615.
61. Vethaak AD, Legler J. Microplastics and human health. Science. 2021;371(6530):672. doi:10.1126/s cience.abe5041.
62. Winiarska E, Jutel M, Zemelka Wiącek M. The potential impact of nano and microplastics on human health: understanding human health risks. Environ Res. 2024;251:118535. doi:10.1016/j.envr es.2024.118535.
63. Wu D, Lim BXH, Seah I, et al. Impact of microplastics on the ocular surface. Int J Mol Sci. 2023;24(4):3928. doi:10.3390/ijms24043928.
64. Xu S, Ma J, Ji R, Pan K, Miao A. Microplastics in aquatic environments: occurrence, accumulation, and biological effects. Sci Total Environ. 2019;703: 134699. doi:10.1016/j.scitotenv.2019.134699.
65. Zhang Y, Wang D, Yin K, et al. Endoplasmic reticulum stress controlled autophagic pathway promotes polystyrene microplastics induced myocardial dysplasia in birds. Environ Pollut. 2022; 311:119963. doi:10.1016/j.envpol.2022.119963.
66. Zhao Z, Mu X, Wu J, Qi HJ, Fang D. Effects of oxygen on interfacial strength of incremental forming of materials by photopolymerization. Extrem Mech Lett. 2016;9:108. doi:10.1016/j.eml.2016.05.012.
67. Ziani K, Ioniță Mîndrican CB, Mititelu M, et al. Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients. 2023;15(3):617. doi:10.3390/nu15030617.
68. Золотова НА, Косырева АМ, Dzhalilova DSh, Fokichev N, Макарова ОВ. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ. 2022;10. doi:10.7717/peerj.1350.
69. Lim JH, Lee SY, Gu HN, Jin G. Evaluating oxygen shielding effect using glycerin or vacuum with varying temperature on 3D printed photopolymer in post polymerization. J Mech Behav Biomed Mater. 2022;130:105170. doi:10.1016/j.jmbbm.2022.105170.
70. Robin JB, Durand J, Derely L, Jacquot B, Cuisinier FJ, Robin J. Observation of oxygen inhibited layer of organic dental resin by confocal Raman-microscopy. e Polymers. 2012;12.
71. GRID-Arendal/Studio Atlantis. Human exposure to microplastic and nanoplastic particles [online graphic]. 2021. Available at: https://www.grida.no/resources/15024. Accessed June 11, 2025.
72. Wada J, Wada K, Gibreel M, Wakabayashi N, Iwamoto T, Vallittu PK, Lassila L. Effect of nitrogen gas post curing and printer type on the mechanical properties of 3D printed hard occlusal splint material. Polymers. 2022;14(19):3971. doi:10.3390/polym14 193971.