Deciphering Signals of Imaging Techniques based on an Old Paradigm of Energy Metabolism Could Lead to Misunderstanding of Brain Function

Main Article Content

Avital Schurr

Abstract

The sequence of the enzymatic reactions of glycolysis, the first biochemical pathway to be elucidated, was revealed in 1940. Today, eighty-five years later, this pathway is still displayed in textbooks, academic courses and online platforms unchanged from its original representation, despite major discoveries that question its accuracy. The dogmatic division of the pathway into aerobic and anaerobic glycolysis, each producing a different end-product, pyruvate or lactate, respectively, a concept that has been debunked, is continuing to be taught and used unchanged. As a result, the term “aerobic glycolysis” continues to imply an inefficient energy production that ends with lactate, despite the presence of oxygen. Therefore, the reliance of modern imaging techniques, such as BOLD fMRI, on the original schematics of the glycolytic pathway for both diagnostic purposes and in studying the metabolic basis of neural activity, could lead to skewed or misinterpreted signals. Scientists, physicians, teachers and students alike are encouraged to consider the paradigm shift from the original concept of glycolysis, based on the discoveries of the past four decades. A few published studies that employed imaging techniques were reexamined here, while relying on the proposed shift, indicating that their original results were misinterpreted. Consequently, it is recommended that for a better understanding of brain function and disfunction both physicians and brain research scientists should consider glycolytic paradigm shift when employing brain imaging techniques and interpreting their signals.

Keywords: BOLD fMRI, cerebral metabolic rate, glucose, glycolysis, lactate, oxygen, paradigm shift

Article Details

How to Cite
SCHURR, Avital. Deciphering Signals of Imaging Techniques based on an Old Paradigm of Energy Metabolism Could Lead to Misunderstanding of Brain Function. Medical Research Archives, [S.l.], v. 13, n. 7, july 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6693>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i7.6693.
Section
Research Articles

References

1. Brooks GA. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals—the “lactate shuttle”. In Circulation, respiration, and metabolism: current comparative approaches (pp. 208-218). Berlin, Heidelberg: Springer Berlin Heidelberg, 1985.
2. Schurr A, West CA, Rigor BM. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988;240(4857):1326-1328. doi:10.1126/science.33758 17
3. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. The Journal of physiology. 2004;558(1):5-30. doi.org/10.1113/jphysiol.2003.058701
4. Gladden LB. 200th anniversary of lactate research in muscle. Exercise and sport sciences reviews. 2008;36(3):109-115. doi:10.1097/JES.0b013e31817c0038
5. Schurr A. Lactate: the ultimate cerebral oxidative energy substrate? Journal of Cerebral Blood Flow & Metabolism, 2006;26(1):142-152. doi.org/10.1038/sj.jcbfm.9600174
6. Schurr A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Frontiers in neuroscience. 2014;8: 360. doi.org/10.3389/fnins. 2014.00360
7. Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Frontiers in neuroscience 2015;9: 22. doi.org/10.3389/fnins. 2015.00022
8. Brooks GA. (2020). Lactate as a fulcrum of metabolism. Redox biology 2020;35: 101454. doi.org/10.1016/j.redox.2020.101454
9. Krebs HA, Johnson WA. Acetopyruvic acid (αγ-diketovaleric acid) as an intermediate metabolite in animal tissues. Biochemical Journal. 1937;31(5):772-779. doi: 10.1042/ bj0310772
10. Holmes BE, Holmes EG. Contributions to the Study of Brain Metabolism: Carbohydrate Metabolism. (Preliminary Paper). Biochemical Journal. 1925;19(3):492-499. doi: 10.1042/ bj0190492
11. Holmes EG, Holmes BE. Contributions to the Study of Brain Metabolism: Carbohydrate Metabolism. Biochemical Journal. 1925;19(5):836-839. doi:10.1042/bj0190836
12. Holmes EG, Holmes BE. Contributions to the study of brain metabolism: carbohydrate metabolism relationship of glycogen and lactic acid. Biochemical Journal. 1926;20(6):1196-1203. doi: 10.1042/bj0201196
13. Holmes BE, Holmes EG. Contributions to the Study of Brain Metabolism. IV: Carbohydrate Metabolism of the Brain Tissue of Depancreatised Cats. Biochemical Journal. 2027;21(2):412-418. doi:10.1042/bj0210412
14. Ashford CA, Holmes EG. Contributions to the study of brain metabolism: Rôle of phosphates in lactic acid production. Biochemical Journal.1929;23(4):748-759. doi: 10.1042/bj0230748
15. Holmes EG, Ashford CA. Lactic acid oxidation in brain with reference to the “Meyerhof cycle.”. Biochemical Journal. 1930;24(4):1119-1127. doi:10.1042/bj0241119
16. Holmes EG. Oxidations in central and peripheral nervous tissue. Biochemical Journal. 1930;24(4):914-925. doi:10.1042/bj0240914
17. Quastel JH, Wheatley AHM. Oxidations by the brain. Biochemical Journal. 1932;26(3):725-744. doi:10.1042/bj0260725
18. Holmes EG. The relation between carbohydrate metabolism and the function of the grey matter of the central nervous system. Biochemical Journal. 1933;27(2), 523-536.
19. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462-464. doi: 10.1126/science.3260686
20. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences. 1994;91(22), 10625-10629. doi.org/10.1073/pnas. 91.22.1 0625
21. Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci. Behav. Rev. 2023;153: 105373. doi.org/10.1016/j.neubiorev.2023.105373
22. Schurr A. How the ‘Aerobic/Anaerobic Glycolysis’ Meme Formed a ‘Habit of Mind’ Which Impedes Progress in the Field of Brain Energy Metabolism. International Journal of Molecular Sciences. 2024;25(3):1433. doi.org/10.3390/ijms25031433
23. Schurr A. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue. Front. Neurosci. 2018;12:700. doi:10.3389/fnins.2 018. 00700
24. Hyder F, Rothman DL, Mason GF, Rangarajan A, Behar KL, Shulman RG. Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H [13C] nuclear magnetic resonance study. Journal of Cerebral Blood Flow & Metabolism. 1997;17(10):1040-1047. doi.org/10.1097/00004647-199710000-00005
25. Madsen PL, Cruz NF, Sokoloff L, Dienel GA. Cerebral Oxygen/Glucose Ratio is Low during Sensory Stimulation and Rises above Normal during Recovery: Excess Glucose Consumption during Stimulation is Not Accounted for by Lactate Efflux from or Accumulation in Brain Tissue. Journal of Cerebral Blood Flow & Metabolism. 1999;19(4):393-400. doi:10.1097/0000 4647-199904000-00005
26. Fujita H, Kuwabara H, Reutens DC, Gjedde A. Oxygen Consumption of Cerebral Cortex Fails to Increase during Continued Vibrotactile Stimulation. Journal of Cerebral Blood Flow & Metabolism. 1999;19(3):266-271. doi:10.1097/00004647-199903000-00004
27. Shulman, Robert G., Fahmeed Hyder, and Douglas L. Rothman. "Lactate efflux and the neuroenergetic basis of brain function." NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo. 2001;14(7‐8):389-396. doi:10.1002/nbm.741
28. Aubert A, Costalat R. A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging NeuroImage. 2002;17: 1162-1181. doi.org/10.1006/nimg.2002.1224
29. Kastrup A, Krüger G, Neumann-Haefelin T, Glover GH, Moseley ME. Changes of Cerebral Blood Flow, Oxygenation, and Oxidative Metabolism during Graded Motor Activation. NeuroImage. 2002;15:74-82. doi.org/10.1006/nimg.2001.0916
30. Zhu X-H, Zhang N, Zhang Y, Uğurbil K, Chen W. New Insights into Central Roles of Cerebral Oxygen Metabolism in the Resting and Stimulus-Evoked Brain. Journal of Cerebral Blood Flow & Metabolism. 2009; 29:10-18 doi.org/10.1038/jcbfm.2008.97
31. Vafaee MS, Vang K, Bergersen LH, Gjedde A. Oxygen Consumption and Blood Flow Coupling in Human Motor Cortex during Intense Finger Tapping: Implication for a Role of Lactate. Journal of Cerebral Blood Flow & Metabolism. 2012;32(10):1859-1868. doi:10.1038/jcbfm.2012.89
32. Hyder F, Fulbright RK, Shulman RG, Rothman DL. Glutamatergic Function in the Resting Awake Human Brain is Supported by Uniformly High Oxidative Energy. Journal of Cerebral Blood Flow & Metabolism. 2013;33(3):339-347. doi:10.1038/jcbfm.2012.207
33. Hyder F, Herman P, Bailey C J, Møller A, Globinsky R Fulbright, RK, Rothman DL, Gjedde A. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. Journal of Cerebral Blood Flow & Metabolism. 2016;36(5):903-916. doi.org/10.1177/0271678X1562 5349
34. Bose A, Epp SM, Belenya R, Kurcyus K, Domingue, EC, Ranft A, Villa ES, Bursche M, Preibisch C, Castrillón G, Riedl V. Simultaneous quantification of oxygen and glucose consumption during visual stimulation in the human cortex. bioRxiv. 2024;2024-10. doi.org/10.1101/2024.10.11.617828
35. Toronov V, Walker S, Gupta R, Choi JH, Gratton E, Hueber D, Webb A. The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal. Neuroimage. 2003;19(4):1521-1531. doi.org/10.1016/S1053-8119(03)00152-6
36. Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain research reviews. 2010;62(2):233-244. doi.org/10.1016/j. brainresrev.2009.12.004
37. Hillman, E. MCoupling mechanism and significance of the BOLD signal: a status report. Annual review of neuroscience. 2014;37(1):161-181. doi.org/10.1146/annurev-neuro-071013-014111
38. Goense J, Bohraus Y, Logothetis NK. fMRI at high spatial resolution: implications for BOLD-models. Frontiers in computational neuroscience. 2016;10:66. doi.org/10.3389/fncom.2016. 00066
39. Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo B, Gilmore AW, Nelson SM, Berg JJ, Greene DJ, McCarthyJE, Tagliazucchi E, Laufs H, Schlaggar BL, Dosenbach NUF, Petersen SE. On the Stability of BOLD fMRI Correlations. Cerebral Cortex. 2017;27(10):4719-4732. doi.org/10.1093/cercor/bhw265
40. Roumes H, Jollé C, Blanc J Benkhaled I, Chatain CP, Massot P, Raffard G, Bouchaud V, Biran M, Pythoud C, Deglone N, Zimmer ER, Pellerin, L, Bouzier-Sore, AK. Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proceedings of the National Academy of Sciences. 2021;118(47):e2112466118. doi.org/10.1073/pnas.2112466118
41. Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid‐response enzyme‐based sensor. Journal of neurochemistry. 1997;69(4):1484-1490. doi.org/10.1046/j.1471-4159.1997. 69041484.x
42. Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front. Pharmacol. 2012;2:96. doi:10.3389/fphar.2011.00096