Inertia-Driven Mitral and Aortic Valves: The Isovolumic Myth

Main Article Content

Neil B. Ingels, Jr., Ph.D. Matts Karlsson, Ph.D. Morten O. Jensen, Ph.D., Dr.Med., FAHA

Abstract

Background: For the past century, the Wiggers Diagram has been universally taught as defining the phases of the cardiac cycle. However, the concepts underlying this diagram have never been fully and directly tested on intact, beating hearts. 


Methods: In vivo datasets from sheep recorded left ventricular and aortic pressures and flows along with simultaneous 4-D coordinates of 30 miniature strategically placed radiopaque markers. This allowed hemodynamic synchronization with tracking of key anatomical landmarks every 16.7 msec to test Wiggers’ concepts. 


Results: The Wiggers Diagram is not supported as there were no consistent isovolumic periods; the mitral valve closed anywhere during the rising phase of left ventricular pressure, and aortic valve closure and mitral valve opening were simultaneous at the end of the systolic pressure drop. 


Conclusions: The Wiggers Diagram describes valve opening and closing solely in terms of pressure differences which can be transmitted almost instantaneously through incompressible blood in the ventricle. However, pressure differences do not open and close the valves; it is inertial flow through the valves. The present study redefines the description of the interaction between the left ventricle and its valves and shows that the periods of isovolumic contraction and relaxation are mythical concepts.

Article Details

How to Cite
INGELS, Neil B.; KARLSSON, Matts; JENSEN, Morten O.. Inertia-Driven Mitral and Aortic Valves: The Isovolumic Myth. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6694>. Date accessed: 15 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6694.
Section
Research Articles

References

1. Wiggers CJ. Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Am J Physiol. 1921;56:415-438.

2. Dagum P, Green GR, Nistal FJ, et al. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation. Nov 9 1999;100(Suppl II):II54-II62.

3. Cheng A, Dagum P, Miller DC. Aortic root dynamics and surgery: from craft to science. Phil Trans R Soc B. 2007;362:1407-1419.

4. Bothe W, Kvitting JP, Swanson JC, Hartnett S, Ingels NB, Jr., Miller DC. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J Thorac Cardiovasc Surg. May 2010; 139(5):1114-22. doi:10.1016/j.jtcvs.2009.12.014

5. Bothe W, Rausch MK, Escobar Kvitting JP, et al. How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? 126/11_suppl_1/S231pii;10.1161/CIRCULATIONAHA.111.084046 doi. Circulation. 2012;126(11 Suppl 1): S231-S238.

6. Dagum P, Timek TA, Green GR, et al. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation. Nov 07 2000;102(19 Suppl 3):III62-9.

7. Glasson JR, Komeda M, Daughters GT, et al. Early systolic mitral leaflet "loitering" during acute ischemic mitral regurgitation. J Thorac Cardiovasc Surg. Aug 1998;116(2):193-205.

8. Goktepe S, Bothe W, Kvitting JP, et al. Anterior mitral leaflet curvature in the beating ovine heart: a case study using videofluoroscopic markers and subdivision surfaces. BiomechModelMechanobiol. 2009;

9. Itoh A, Krishnamurthy G, Swanson JC, et al. Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol. Jun 2009; 296(6):H1766-73. doi:10.1152/ajpheart.00120.2009

10. Swanson JC, Krishnamurthy G, Itoh A, et al. Vagal nerve stimulation reduces anterior mitral valve leaflet stiffness in the beating ovine heart. S0021-9290(12)00227-8pii;10.1016/j.jbiomech.2012.04.009 doi. J Biomech. Jul 26 2012;45(11):2007-13. doi:10.1016/j.jbiomech.2012.04.009

11. Tibayan FA, Rodriguez F, Langer F, et al. Increases in mitral leaflet radii of curvature with chronic ischemic mitral regurgitation. J Heart Valve Dis. Sep 2004;13(5):772-8.

12. Timek T, Dagum P, Lai DT, et al. The role of atrial contraction in mitral valve closure. J Heart Valve Dis. May 2001;10(3):312-9.

13. Timek TA, Green GR, Tibayan FA, et al. Aorto-mitral annular dynamics. Ann Thorac Surg. Dec 2003;76(6):1944-50.

14. Timek TA, Liang D, Daughters GT, Ingels NB, Jr., Miller DC. Effect of semi-rigid or flexible mitral ring annuloplasty on anterior leaflet three-dimensional geometry. J Heart Valve Dis. Mar 2008;17(2):149-54.

15. Timek TA, Nielsen SL, Lai DT, et al. Mitral annular size predicts Alfieri stitch tension in mitral edge-to-edge repair. J Heart Valve Dis. Mar 2004; 13(2):165-73.

16. Ingels, Jr., Neil B, Karlsson M. Mitral Valve Mechanics (https://www.diva-portal.org/smash/get/diva2:896340/FULLTEXT01.pdf). 2015.

17. Timek T, Glasson JR, Dagum P, et al. Ring annuloplasty prevents delayed leaflet coaptation and mitral regurgitation during acute left ventricular ischemia. J Thorac Cardiovasc Surg. 2000;119:774-783.

18. Niczyporuk MA, Miller DC. Automatic tracking and digitization of multiple radiopaque myocardial markers. Computers and Biomedical Research. 1991;24:129-142.

19. Moon MR, DeAnda A, Daughters GT, Ingels NB, Miller DC. Experimental evaluation of different chordal preservation methods during mitral valve replacement. Ann Thorac Surg. 1994;58:931-944.

20. Beyar R, Sideman S, eds. Simulation and imaging of the cardiac system. Proceedings of the Henry Goldberg Workshop, held in Haifa, Israel, March 4-7, 1984. Martinus Nijhoff Publ, The Hague; 1985. Simulation and imaging of the cardiac system Proceedings of the Henry Goldberg Workshop, held in Haifa, Israel, March 4-7, 1984.

21. Pasipoularides A. Heart’s Vortex. Intracardiac Blood Flow Phenomena. Peoples Medical Publishing House – USA; 2010.

22. Jensen MO, Lemmon JD, Gessaghi VC, Conrad CP, Levine RA, Yoganathan AP. Harvested porcine mitral xenograft fixation: impact on fluid dynamic performance. J Heart Valve Dis. Jan 2001;10(1): 111-24.

23. Jensen H, Jensen MO, Smerup MH, et al. Impact of papillary muscle relocation as adjunct procedure to mitral ring annuloplasty in functional ischemic mitral regurgitation. Circulation. Sep 15 2009;120(11 Suppl):S92-8. doi:10.1161/CIRCULAT IONAHA.108.817833

24. Jensen MO, Hagege AA, Otsuji Y, Levine RA, Leducq Transatlantic MN. The unsaddled annulus: biomechanical culprit in mitral valve prolapse? Circulation. Feb 19 2013;127(7):766-8. doi:10.116 1/CIRCULATIONAHA.112.000628

25. Jensen MO, Jensen H, Levine RA, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry. J Thorac Cardiovasc Surg. Sep 2011;142(3):697-703. doi:10.1016/j.jtcv s.2011.01.022

26. Askov JB, Honge JL, Jensen MO, Nygaard H, Hasenkam JM, Nielsen SL. Significance of force transfer in mitral valve-left ventricular interaction: in vivo assessment. J Thorac Cardiovasc Surg. Jun 2013;145(6):1635-41.

27. Jensen MO, Jensen H, Smerup M, et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation. Sep 30 2008;118(14 Suppl):S250-5. doi:10.1161/CI RCULATIONAHA.107.746776

28. Nielsen SL, Timek TA, Green GR, et al. Influence of anterior mitral leaflet second-order chordae tendineae on left ventricular systolic function. Circulation. Jul 29 2003;108(4):486-91. doi:10.1161/01.CIR.0000080504.70265.05

29. Jimenez JH, Soerensen DD, He Z, He S, Yoganathan AP. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Annals of biomedical engineering. Nov 2003;31(10):1171-81.

30. Holmes JW, Hunlich M, Hasenfuss G. Energetics of the Frank-Starling effect in rabbit myocardium: economy and efficiency depend on muscle length. Am J Physiol Heart Circ Physiol. Jul 2002;283(1):H324-30. doi:10.1152/ajpheart.0068 7.2001

31. Suga HY, Goto Y, Igarashi Y, Yamada O, Nozawa T, Yasumura Y. Ventricular suction under zero source pressure for filling. Am J Physiol 251 (Heart Circ Physiol 20). 1986:H47-H55.

32. Yellin EL, Nikolic SD, Frater RW. Left ventricular filling dynamics and diastolic function. Prog Cardiovasc Dis. 1990;32:247-271.

33. Ingels NB, Jr., Daughters GT, 2nd, Nikolic SD, et al. Left atrial pressure-clamp servomechanism demonstrates LV suction in canine hearts with normal mitral valves. Am J Physiol. Jul 1994;267(1 Pt 2):H354-62.

34. Ingels NB, Jr., Daughters GT, Nikolic SD, et al. Left ventricular diastolic suction with zero left atrial pressure in open-chest dogs. Am J Physiol. Apr 1996;270(4 Pt 2):H1217-24.

35. Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 2007;9:741-747.