Enhancing effect of polyoxometalates on the aging stress responses of skin cells

Main Article Content

Katsuyuki Fujinami Katsuaki Dan Nanami Tominaga Toshiko Tanaka-Kagawa Ikuo Kawamura

Abstract

The accumulation of senescent cells has attracted attention as a cause of aging. Various environmental factors have a harmful effect on the skin, causing aging stress in skin cells, which in turn promotes cellular aging through the accumulation of reactive oxygen species. Stem cell-secreted exosomes also play important roles in skin regeneration and stress relief. Among the polyoxometalates with various biological activities, VB1: vanadyl sulfate (VOSO4), VB2: K11H[(VO)3(SbW9O33)2]・27H2O and VB3: Na2[SbW9O34]・19H2O have been developed as cosmetic ingredients that can be applied to the skin. We evaluated whether these VBs could enhance the resistance of cells to skin aging stress and examined the underlying mechanisms. In this experiment, skin fibroblasts were subjected to glycation (advanced glycosylated end products), oxidation (hydrogen peroxide), and photoaging (ultraviolet irradiation for 5 or 25 min), and VBs were applied before or after treatment. Whether VBs enhance the cellular stress response was determined by changes in the mRNA levels of three parameters (collagen, elastin, and hyaluronic acid synthase). We also investigated whether treating stem cells with VBs results in the secretion of exosomes with properties different from those normally secreted. In addition, because intracellular reactive oxygen species accumulation was suppressed in human dermal fibroblasts treated with VBs, as shown here and in our previous study, the mitochondrial oxygen consumption rate and uptake of cystine, a raw material for the synthesis of the intracellular antioxidant glutathione, were also examined. According to the results of those experiments, we concluded that VBs could enhance stress responses to all the aging stress examined. Vanadyl sulfate likely showed direct effects on dermal fibroblasts, while VB3 was supposed to exhibit the effect via modification of exosomes secreted from mesenchymal stem cells. In addition, VB2 might be involved in the stress response through both direct action on the cells and by inducing the production of exosomes suitable for the stress response. It has been suggested that a combination of several types of VB may exert multifaceted anti-aging effects.

Article Details

How to Cite
FUJINAMI, Katsuyuki et al. Enhancing effect of polyoxometalates on the aging stress responses of skin cells. Medical Research Archives, [S.l.], v. 13, n. 8, aug. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6726>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i8.6726.
Section
Research Articles

References

1. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349-352. doi:10.1126/science.279.5349.349
2. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol. 2003;5(8):741-747. doi:10.1038/ncb1024
3. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621. doi:10.1016/0014-4827(61)90192-6
4. Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 2017;108(4):563-569. doi:10.1111/cas.13184
5. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184-189. doi:10.1038/nature16932
6. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28(8):1556-1568. doi:10.1038/s41591-022-01923-y
7. Shin SH, Lee YH, Rho N-K, Park KY. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol. 2023;14:1195272 [review]. doi:10.3389/fphys.2023.1195272
8. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915-1928. doi:10.1083/jcb.201708007
9. Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. doi:10.15252/embr.201948395
10. Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS Journal. 2017;284(2):183-195. doi:10.1111/febs.13820
11. Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 2006;8(11):1291-1297. doi:10.1038/ncb1491
12. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980;255(6):2372-2376. doi:10.1016/S0021-9258(19)85901-X
13. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274(17):11455-11458. doi:10.1074/jbc.274.17.11455
14. Lv J, Yang S, Lv M, Lv J, Sui Y, Guo S. Protective roles of mesenchymal stem cells on skin photoaging: a narrative review. Tissue Cell. 2022;76:101746. doi:10.1016/j.tice.2022.101746
15. Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10(1):142. doi:10.1186/s13287-019-1253-6
16. Weiliang Z, Lili G. Research advances in the application of Adipose-derived stem cells derived exosomes in cutaneous wound healing. Ann Dermatol. 2021;33(4):309-317. doi:10.5021/ad.2021.33.4.309
17. An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021;54(3):E12993. doi:10.1111/cpr.12993
18. Dan K, Yeh H-L. Biological activity of polyoxometalates and their applications in anti-aging. Med Res Arch. 2024;12(12). doi:10.18103/mra.v12i12.6108
19. Dan K, Katoh N, Matsuoka T, Fujinami K. In vitro antimicrobial effects of virus block, which contains multiple polyoxometalate compounds, and hygienic effects of virus block-supplemented moist hand towels. Pharmacology. 2019;104(1-2):1-15. doi:10.1159/000500897
20. Dan K, Fujinami K, Sumitomo H, et al. Application of antiviral polyoxometalates to living environments—antiviral moist hand towels and stationery items. Appl Sci. 2020;10(22):8246. doi:10.3390/app10228246
21. Fujinami K, Dan K, Tanaka-Kagawa T, Kawamura I. Anti-aging effects of polyoxometalates on skin. Applied Sciences. 2021;11(24):11948. doi:10.3390/app112411948
22. Eckes B, Mauch C, Hüppe G, Krieg T. Differential regulation of transcription and transcript stability of pro-alpha 1 (I) collagen and fibronectin in activated fibroblasts derived from patients with systemic scleroderma. Biochem J. 1996;315(2):549-554. doi:10.1042/bj3150549
23. Hwang K-A, Yi B-R, Choi K-C. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab Anim Res. 2011;27(1):1-8. doi:10.5625/lar.2011.27.1.1
24. Maeda S, Matsui T, Ojima A, Takeuchi M, Yamagishi S-I. Sulforaphane inhibits advanced glycation end product-induced pericyte damage by reducing expression of receptor for advanced glycation end products. Nutr Res. 2014;34(9):807-813. doi:10.1016/j.nutres.2014.08.010
25. Kartal B, Akçay A, Palabiyik B. Oxidative stress upregulates the transcription of genes involved in thiamine metabolism. Turk J Biol. 2018;42(5):447-452. doi:10.3906/biy-1801-51
26. Liu W, Ma C, Li H-Y, Chen L, Yuan S-S, Li K-J. MicroRNA-146a downregulates the production of hyaluronic acid and collagen I in Graves’ ophthalmopathy orbital fibroblasts. Exp Ther Med. 2020;20(5):38. doi:10.3892/etm.2020.9165
27. Deslee G, Woods JC, Moore CM, et al. Elastin expression in very severe human COPD. Eur Respir J. 2009;34(2):324-331. doi:10.1183/09031936.00123008
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262
29. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 2007;67(19):9463-9471. doi:10.1158/0008-5472.CAN-07-2034
30. N. E. Savaskan, Heckel A, Hahnen E, et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nature Med. 2008;14(6):629-632. doi:10.1038/nm1772
31. Zhang X, Lan L, Niu L, et al. Oxidative stress regulates cellular bioenergetics in esophageal squamous cell carcinoma cell. Biosci Rep. 2017;37(6):BSR20171006. doi:10.1042/BSR20171006
32. Yu J-X, Lin M, Zhang W-X, Lao F-X, Huang H-C. Astaxanthin prevents oxidative damage and cell apoptosis under oxidative stress involving the restoration of mitochondrial function. Cell Biochem Funct. 2024;42(8):e70027. doi:10.1002/cbf.70027
33. McNish H, Mathapathi MS, Figlak K, Damodaran A, Birch-Machin MA. The effect of blue light on mitochondria in human dermal fibroblasts and the potential aging implications. FASEB J. 2025;39(11):e70675. doi:10.1096/fj.202500746R
34. Hudson L, Rashdan E, Bonn CA, Chavan B, Rawlings D, Birch‐Machin MA. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J. 2020;34(3):3874-3883. doi:10.1096/fj.201902351RR
35. Birch‐Machin MA, Russell EV, Latimer JA. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br J Dermatol. 2013;169(Suppl 2):9-14. doi:10.1111/bjd.12207
36. Yoshioka H, Yamada T, Hasegawa S, et al. Senescent cell removal via JAG1-NOTCH1 signalling in the epidermis. Exp Dermatol. 2021;30(9):1268-1278. doi:10.1111/exd.14361
37. Ogata Y, Yamada T, Hasegawa S, et al. SASP-induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis. Exp Dermatol. 2021;30(1):84-91. doi:10.1111/exd.14205