Translating Past Medicinal Research Advances into Future Monitoring strategies using Microelectrode Arrays: A comprehensive Review and Forward-Looking Perspective
Main Article Content
Abstract
Microelectrode arrays devices are extensively utilized in basic research and clinical diagnostics, such as drug development based on cell analysis, establishment of a system for recognizing varied medical conditions, electrochemical detection of biomolecules, and therapeutic drugs. Microelectrodes are used to perform monitoring in microelectrode array, which may be either rigid or flexible depending upon the substrate employed to fabricate them. In contrast to conventional macroelectrodes (>1mm), the microelectrodes offer several benefits, like enhancement in mass transfer, quick achievement of steady state, decrease in non-faradaic current, and the capacity to boost current with microelectrode arrays. The unique characteristics features of microelectrode arrays allow them to function as efficient electrochemical sensor for biological and pharmacological applications, facilitating both in vivo and in vitro biological investigations. Microelectrode arrays are applied across a wide range of domains, from glucose and neurotransmitter detection to monitoring of biomolecules, neural activity, and cardiac arrhythmias. In past years, varied electrochemical biosensor for bioactive molecules have been accomplished with microelectrode arrays, with excellent sensitivity and selectivity. This review discusses, the latest advancements for fabrication of microelectrode arrays and varied application of these devices in biochemical analysis. In addition, the future monitoring strategies, integration with wearable, miniaturized platforms for personalized medicine and real-time health monitoring, biological, technical, and clinical problems using microelectrode arrays have also been discussed.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Pungor E. Laboratory Techniques in Electroanalytical Chemistry. Vol 4.; 1985. doi:10.1016/0165-9936(85) 87050-3
3. R. Mark Whitman. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science (80- ). 2006;311:1570-1574.
4. Kutner WŁO. MICROELECTRODES . DEFINITIONS, CHARACTERIZATION, AND APPLICATIONS Prepared for publication by and applications (Technical Report ). 2000;72(8):1483-1492.
5. Compton RG, Huang X jiu, Mahony AMO, Compton RG. Microelectrode Arrays for Electrochemistry : Approaches to Fabrication. 2009;(7):776-788. doi:10.1002/smll.200801593
6. B. Ghane-Motlagh MS. A review of Microelectrode Array technologies: Design and implementation challenges. IEEE. Published online 2013:38-41.
7. Tanwar A, Gandhi HA, Kushwaha D, Bhattacharya J. A review on microelectrode array fabrication techniques and their applications. Mater Today Chem. 2022;26:101153. doi:10.1016/j.mtchem.2022.101153
8. Zhang Z, Zheng T, Zhu R. Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip. Microsystems Nanoeng. 2020;6(1). doi:10.1038/s41378-020-00196-0
9. Ahmadvand T, Mirsadeghi S, Shanehsazzadeh F, Kiani S, Fardmanesh M. A Novel Low-Cost Method for Fabrication of 2D Multi-Electrode Array (MEA) to Evaluate Functionality of Neuronal Cells. Published online 2020:51. doi:10.3390/iecb2020-07087
10. Demircan Yalcin Y, Bastiaens AJ, Frimat JP, Luttge R. Long-term brain-on-chip: Multielectrode array recordings in 3D neural cell cultures. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom. 2021;39(6). doi:10.1116/6.0001297
11. Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev. 2019;48(6):1712-1740. doi:10.1039/c8cs00738a
12. Potter SM. Distributed processing in cultured neuronal networks. [Review] [154 refs]. Prog Brain Res. 1902;130:49-62.
13. Kelly RC, Smith MA, Samonds JM, et al. Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J Neurosci. 2007;27(2):261-264. doi:10.1523/JNEUR OSCI.4906-06.2007
14. Ayoub AE, Gosselin B, Sawan M. A microsystem integration platform dedicated to build multi-chip-neural interfaces. Conf Proc IEEE Eng Med Biol Soc. 2007;2:6605-6608.
15. Thomas CA, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74(1):61-66. doi:10.1016/0014-4827(72)90481-8
16. Gavin PF, Ewing AG. Continuous separations with microfabricated electrophoresis-electrochemical array detection. J Am Chem Soc. 1996;118(37):8932-8936. doi:10.1021/ja961368s
17. Nagale MP, Fritsch I. Individually Addressable, Submicrometer Band Electrode Arrays. 1. Fabrication from Multilayered Materials. Anal Chem. 1998;70 (14):2902-2907. doi:10.1021/ac971040x
18. Wittkampf M, Cammann K, Amrein M, Reichelt R. Characterization of microelectrode arrays by means of electrochemical and surface analysis methods. Sensors Actuators, B Chem. 1997;40(1):79-84. doi:10.1016/S0925-4005(97)80200-6
19. Song W, Wei S, Yu HX, Vuki M, Xu D. Biosensor Arrays for Environmental Monitoring. Environ Monit. 2011;(November 2011). doi:10.5772/26494
20. Henry CS, Fritsch I. Microcavities Containing Individually Addressable Recessed Microdisk and Tubular Nanoband Electrodes. J Electrochem Soc. 1999;146(9):3367-3373. doi:10.1149/1.1392479
21. Nlwa O, Tabel H. Voltammetric Measurements of Reversible and Quasi-Reversible Redox Species Using Carbon Film Based Interdigitated Array Microelectrodes. Anal Chem. 1994;66(2):285-289. doi:10.1021/ac00074a016
22. Sreenivas G, Ang SS, Fritsch I, Brown WD, Gerhardt GA, Woodward DJ. Fabrication and characterization of sputtered-carbon microelectrode arrays. Anal Chem. 1996;68(11):1858-1864. doi:10.1 021/ac9508816
23. Singh AK, Jaiswal N, Tiwari I, Ahmad M, Silva SRP. Electrochemical biosensors based on in situ grown carbon nanotubes on gold microelectrode array fabricated on glass substrate for glucose determination. Microchim Acta. 2023;190(2). doi:10.1007/s00604-022-05626-6
24. Ahmad M, Anguita J V., Stolojan V, et al. High Quality Carbon Nanotubes on Conductive Substrates Grown at Low Temperatures. Adv Funct Mater. 2015; 25(28):4419-4429. doi:10.1002/adfm.201501214
25. Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens J. 2015;15(6):3164-3185. doi:10.1109/JSEN.2014.2375203
26. Craston DH, Jones CP, Williams DE, El Murr N. Microband electrodes fabricated by screen printing processes: Applications in electroanalysis. Talanta. 1991;38(1):17-26. doi:10.1016/0039-9140(91)80005-K
27. Dong H, Li CM, Zhang YF, Cao XD, Gan Y. Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip. 2007;7(12):1752-1758. doi:10.1039/b712394a
28. Sander MS, Gao H. Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. J Am Chem Soc. 2005;127(35):12158-12159. doi:10.1021/ja0522231
29. Chander R, Raychaudhuri AK. Electrodeposition of aligned arrays of ZnO nanorods in aqueous solution. Solid State Commun. 2008;145(1-2):81-85. doi:10.1016/j.ssc.2007.09.031
30. Zhang M, Lenhert S, Wang M, et al. Regular Arrays of Copper Wires Formed by Template-Assisted Electrodeposition. Adv Mater. 2004;16(5):409-413. doi:10.1002/adma.200305577
31. Abbott J, Mukherjee A, Wu W, et al. Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array. Lab Chip. 2022;22(7):1286-1296. doi:10.1039/d1lc00878a
32. Yuan X, Hierlemann A, Frey U. Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array with 19 584 Electrodes and High SNR. IEEE J Solid-State Circuits. 2021;56 (8):2466-2475. doi:10.1109/JSSC.2021.3066043
33. Tedjo W, Obeidat Y, Catandi G, Carnevale E, Chen T. Real-time analysis of oxygen gradient in oocyte respiration using a high-density microelectrode array. Biosensors. 2021;11(8):1-18. doi:10.3390/bios110 80256
34. Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Heal Sci Reports. 2024;7(3):5-9. doi:10.1002/hsr2.2004
35. Frebel H, Chemnitius GC, Cammann K, Kakerow R, Rospert M, Mokwa W. Multianalyte sensor for the simultaneous determination of glucose, L-lactate and uric acid based on a microelectrode array. Sensors Actuators, B Chem. 1997;43(1-3):87-93. doi:10.1016/S0925-4005(97)00133-0
36. Atta NF, Galal A, El-Said DM. A novel electrochemical sensor for paracetamol based on β-cyclodextrin/Nafion®/polymer nanocomposite. Int J Electrochem Sci. 2015;10(2):1404-1419. doi:10.1016/s1452-3981(23)05081-2
37. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6):1539S-1547S. doi:10.1093/jn/137.6.1539s
38. Robertson SD, Plummer NW, De Marchena J, Jensen P. Developmental origins of central norepinephrine neuron diversity. Nat Neurosci. 2013;16(8):1016-1023. doi:10.1038/nn.3458
39. Wang L, Song Y, Zhang Y, et al. A microelectrode array electrodeposited with reduced graphene oxide and Pt nanoparticles for norepinephrine and electrophysiological recordings. J Micromechanics Microengineering. 2017;27(11). doi:10.1088/1361-6439/aa7546
40. Kaur B, Pandiyan T, Satpati B, Srivastava R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surfaces B Biointerfaces. 2013;111:97-106. doi:10.1016/j.cols urfb.2013.05.023
41. Kim DS, Kang ES, Baek S, et al. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci Rep. 2018;8(1):1-10. doi:10.1038/s41598-018-32477-0
42. Zhao D, Lu Y, Ding Y, Fu R. An amperometric L-tryptophan sensor platform based on electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers. Sensors Actuators, B Chem. 2017; 241:601-606. doi:10.1016/j.snb.2016.10.010
43. Tesfaye G, Negash N, Tessema M. Electrochemical determination of vitamin B6 in pharmaceutical and energy drink samples. J Electrochem Sci Eng. 2023;13(2):297-319. doi:10.5 599/jese.1674
44. Singh AK, Agrahari S, Shukla S, Tiwari I, Ahmad M, Silva SRP. An Array-based Photolithographically Patterned Electrochemical Sensing Platform for Highly Sensitive Determination of Uric Acid, Dopamine, l-Tryptophan, and Pyridoxine in Biological Samples. J Anal Test. 2024;8(4):505-517. doi:10.1007/s41664-024-00318-x
45. Reynolds BA, Weiss S. Generation of Neurons and Astrocytes from Isolated Cells of the Adult Mammalian Central Nervous System. Science (80- ). 1992;255(5052):1707-1710. doi:10.1126/science.1 553558
46. Yandava BD, Billinghurst LL, Snyder EY. "Global" cell replacement is feasible via neural stem cell transplantation: Evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci U S A. 1999;96(12):7029-7034. doi:10.1073/pnas.96.12.7 029
47. Gao F, Luo J, Song Y, et al. Microelectrode arrays for monitoring neural activity in neural stem cells with modulation by glutamate in vitro. Nanotechnol Precis Eng. 2020;3(2):69-74. doi:10.1016/j.npe.20 20.03.002
48. Goldberger JJ, Cain ME, Hohnloser SH, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society Scientific Statement on Noninvasive Risk Stratification Techniques for Identifying Patients at Risk for Sudden Cardiac Death. A Scientific Statement From the America. J Am Coll Cardiol. 2008;52(14):1179-1199. doi:10.1016/j.jacc.2008.05.003
49. Roden DM. Long QT syndrome: Reduced repolarization reserve and the genetic link. J Intern Med. 2006;259(1):59-69. doi:10.1111/j.1365-279 6.2005.01589.x
50. Schmidt S, Li W, Schubert M, et al. Novel high-dense microelectrode array based multimodal bioelectronic monitoring system for cardiac arrhythmia re-entry analysis. Biosens Bioelectron. 2024;252 (February). doi:10.1016/j.bios.2024.116120
51. Hasan RMM, Luo X. Promising Lithography Techniques for Next-Generation Logic Devices. Nanomanufacturing Metrol. 2018;1(2):67-81. doi:10.1007/s41871-018-0016-9
52. Wu L, Hilbers MF, Lugier O, et al. Fluorescent Labeling to Investigate Nanopatterning Processes in Extreme Ultraviolet Lithography. ACS Appl Mater Interfaces. 2021;13(43):51790-51798. doi:10.102 1/acsami.1c16257
53. Lin YX, Li SH, Huang WC. Fabrication of soft tissue scaffold-mimicked microelectrode arrays using enzyme-mediated transfer printing. Micromachines. 2021;12(9). doi:10.3390/mi12091057
54. Kang YN, Chou N, Jang JW, Choe HK, Kim S. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. Microsystems Nanoeng. 2021;7(1). doi:10.1038/s4 1378-021-00295-6