Cutting the Gordian Knot of Iron, Oxygen Radicals, Erythropoiesis, and Red Cell Survival: Allosteric Regulation of Pyruvate Kinase Activity
Main Article Content
Abstract
Iron is an element critical to supporting a wide range of biological functions, chief among them being the support of oxygen transport and cellular respiration. However, iron reduction-oxidation reactions give rise to reactive oxygen species causing oxidative damage. Being both essential and potentially dangerous, iron metabolism from its absorption to utilization in erythropoiesis is tightly controlled. Erythrocyte health and oxygen delivery, reactive oxygen species generation and associated antioxidant activity are all interconnected through a network of feedback loops allowing for dynamic regulation in response to changing body requirements. When tangled by a pathology, this network becomes a real Gordian Knot. Resultant highly variable pathological homeostasis is reviewed with examples of pyruvate kinase (PK) deficiency, hereditary iron overload syndromes, chronic kidney disease, anemia of chronic inflammation, chronic Hepatitis C, beta-thalassemia and homozygous sickle cell disease, and blood transfusion therapy.
Emerging understanding of the feedback links between different regulatory systems helps us to cut the metabolic Gordian Knot by tackling the underlying mechanisms of pathology, driving aberrant metabolism towards healthy homeostasis. One such opportunity lies in management of pathology-driven oxidative stress by modulation of the activity of the glycolytic cycle, specifically in the activation of its final energy producing step catalyzed by the pyruvate kinase enzyme. Allosteric regulation of its activity offers an attractive target in multiple therapeutic applications.
Most of the evidence of clinical performance of pyruvate kinase activators comes from the work done with mitapivat (Agios Pharmaceuticals), a small-molecule allosteric PK activator that was granted an orphan drug designation by the Food and Drug Administration for PK deficiency, thalassemia, and sickle cell disease. It is currently approved for treatment of PK deficiency in adults and is under review for treatment of thalassemia. A number of other PK activity modulators are currently in development, with different PK isoforms targeted for a range of clinical applications. This potential is rooted in the ability of PK activators to re-activate the glycolytic pathway to generate energy for antioxidation systems, improve glucose utilization, and, in the case of the PK M2 isoform, shift the oligomeric balance away from the form associated with induced transcription of inflammatory cytokines. However, despite extensive research, application of PK activators in clinical practice remains limited. Available clinical evidence and emerging applications are discussed making a case for potential utility of PK activators in a wide spectrum of conditions associated with elevated reactive oxygen species production, increased oxidative stress and inflammation.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Cai Z, Yan LJ. Protein Oxidative Modifications: Beneficial Roles in Disease and Health. J Biochem Pharmacol Res. Mar 2013;1(1):15-26.
3. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. Journal of food biochemistry. Mar 2020;44(3):e13145. doi:10.1111/jfbc.13145
4. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino acids. Dec 2003;25(3-4):207-18. doi:10.1007/s00726-003-0011-2
5. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity. 2014;2014:360438. doi:10.1155/2014/360438
6. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of toxicology. 2023/10/01 2023;97(10):2499-2574. doi:10.1007/s00204-023-03562-9
7. Slusarczyk P, Mleczko-Sanecka K. The Multiple Facets of Iron Recycling. Genes. Aug 30 2021;12(9)doi:10.3390/genes12091364
8. D'Alessandro A, Hansen KC, Eisenmesser EZ, Zimring JC. Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? Blood transfusion = Trasfusione del sangue. Jul 2019;17(4):281-288. doi:10.2450/2019.0072-19
9. Izzo P, Spagnuolo A, Manicone A. ASSESSMENT OF ERYTHROCYTE DEFORMABILITY WITH THE LASERASSISTED OPTICAL ROTATIONAL CELL ANALYZER (LORCA). Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale. 02/28 1999;75(1-2)doi:10.4081/jbr.1999.10857
10. Alfano KM, Tarasev M, Meines S, Parunak G. An approach to measuring RBC haemolysis and profiling RBC mechanical fragility. Journal of medical engineering & technology. 2016;40(4):162-71. doi:10.3109/03091902.2016.1153741
11. Malhotra U, Roy M, Sontakke M, Choudhary P. A recent paradigm on iron absorption, prevalence, and emerging dietary approaches to eradicate iron deficiency. Food Bioengineering. 2023;2(1):53-63. doi:https://doi.org/10.1002/fbe2.12042
12. Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS omega. 2022/06/21 2022;7(24):20441-20456. doi:10.1021/acsomega.2c01833
13. Lee FS. At the crossroads of oxygen and iron sensing: hepcidin control of HIF-2α. The Journal of clinical investigation. Jan 2 2019;129(1):72-74. doi:10.1172/jci125509
14. Saito H. METABOLISM OF IRON STORES. Nagoya J Med Sci. Aug 2014;76(3-4):235-254.
15. Charlebois E, Pantopoulos K. Nutritional Aspects of Iron in Health and Disease. Nutrients. May 24 2023;15(11)doi:10.3390/nu15112441
16. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, NY). Dec 17 2004;306(5704):2090-3. doi:10.1126/science.1104742
17. Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochimica et biophysica acta. Sep 2012;1823(9):1426-33. doi:10.1016/j.bbamcr.2012.03.004
18. Renassia C, Peyssonnaux C. New insights into the links between hypoxia and iron homeostasis. Current opinion in hematology. May 2019;26(3):125-130. doi:10.1097/moh.0000000000000494
19. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. The Journal of clinical investigation. Oct 2002;110(7):1037-44. doi:10.1172/jci15686
20. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to Tango: Regulation of Mammalian Iron Metabolism. Cell. 2010;142(1):24-38. doi:10.1016/j.cell.2010.06.028
21. Waldvogel-Abramowski S, Waeber G, Gassner C, et al. Physiology of iron metabolism. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. Jun 2014;41(3):213-21. doi:10.1159/000362888
22. Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Peña-Rosas JP. Serum or plasma ferritin concentration as an index of iron deficiency and overload. The Cochrane database of systematic reviews. May 24 2021;5(5):Cd011817. doi:10.1002/14651858.CD011817.pub2
23. De Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. The EMBO journal. Jun 20 2007;26(12):2823-31. doi:10.1038/sj.emboj.7601735
24. Chen H, Su T, Attieh ZK, et al. Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood. 2003/09/01/ 2003;102(5):1893-1899. doi:https://doi.org/10.1182/blood-2003-02-0347
25. Brissot P, Ropert M, Le Lan C, Loréal O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochimica et Biophysica Acta (BBA) - General Subjects. 2012/03/01/ 2012;1820(3): 403-410. doi:https://doi.org/10.1016/j.bbagen.2011.07.014
26. Sukhbaatar N, Weichhart T. Iron Regulation: Macrophages in Control. Pharmaceuticals (Basel, Switzerland). Dec 14 2018;11(4)doi:10.3390/ph11040137
27. Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB life. 2017;69(6):399-413. doi:https://doi.org/10.1002/iub.1629
28. Kapitsinou PP, Liu Q, Unger TL, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood. 2010/10/21/ 2010;116 (16):3039-3048. doi:https://doi.org/10.1182/blood-2010-02-270322
29. Anderson Sheila A, Nizzi Christopher P, Chang Y-I, et al. The IRP1-HIF-2α Axis Coordinates Iron and Oxygen Sensing with Erythropoiesis and Iron Absorption. Cell metabolism. 2013/02/05/ 2013;17(2):282-290. doi:https://doi.org/10.1016/j.cmet.2013.01.007
30. Elliott S, Pham E, Macdougall IC. Erythropoietins: A common mechanism of action. Experimental hematology. 2008;36(12):1573-1584. doi:10.1016/j.exphem.2008.08.003
31. Coffey R, Ganz T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. Hemasphere. Mar-Apr 2018;2(2):e35. doi:10.1097/hs9.0000000000000035
32. Khalil S, Delehanty L, Grado S, et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. The Journal of experimental medicine. Feb 5 2018;215(2):661-679. doi:10.1084/jem.20170396
33. Akram M. Mini-review on glycolysis and cancer. J Cancer Educ. Sep 2013;28(3):454-7. doi:10.1007/s13187-013-0486-9
34. Liu Z, Zhang C, Lee S, et al. Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metabolic Engineering. 2019/03/01/ 2019;52:263-272. doi:https://doi.org/10.1016/j.ymben.2019.01.001
35. Brand K. Aerobic Glycolysis by Proliferating Cells: Protection against Oxidative Stress at the Expense of Energy Yield. Journal of bioenergetics and biomembranes. 1997/08/01 1997;29(4):355-364. doi:10.1023/A:1022498714522
36. Fothergill LA, Michels PA. Evolution of glycolysis. Progress in Biophysics and Molecular Biology. 1992;59:106-235.
37. Beutler E. The relationship of red cell enzymes to red cell life-span. Blood Cells. 1988;14(1):69-91.
38. Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein science : a publication of the Protein Society. Oct 2019;28(10):1771-1784. doi:10.1002/pro.3691
39. Adem S, Comakli V, Uzun N. Pyruvate kinase activators as a therapy target: a patent review 2011-2017. Expert Opin Ther Pat. Jan 2018;28(1):61-68. doi:10.1080/13543776.2018.1391218
40. Desai S, Ding M, Wang B, et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget. Sep 30 2014;5(18):8202-10. doi:10.18632/oncotarget.1159
41. Anastasiou D, Yu Y, Israelsen WJ, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature chemical biology. 2012/10/01 2012;8(10):839-847. doi:10.1038/nchembio.1060
42. Wong N, Ojo D, Yan J, Tang D. PKM2 contributes to cancer metabolism. Cancer letters. 2015/01/28/ 2015;356(2, Part A):184-191. doi:https://doi.org/10.1016/j.canlet.2014.01.031
43. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Seminars in Cancer Biology. 2005/08/01/ 2005;15(4):300-308. doi:https://doi.org/10.1016/j.semcancer.2005.04.009
44. Vander Heiden MG, Lunt SY, Dayton TL, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325-34. doi:10.1101/sqb.2012.76.010900
45. Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (New York, NY). Dec 2 2011;334(6060):1278-83. doi:10.1126/science.1211485
46. Al-Samkari H, van Beers EJ, Kuo KHM, et al. The variable manifestations of disease in pyruvate kinase deficiency and their management. Haematologica. 03/12 2020;105(9):2229-2239. doi:10.3324/haematol.2019.240846
47. van Wijk R, van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005;106(13):4034-4042. doi:10.1182/blood-2005-04-1622
48. Zaninoni A, Marra R, Fermo E, et al. Evaluation of the main regulators of systemic iron homeostasis in pyruvate kinase deficiency. Scientific reports. 2023/03/16 2023;13(1):4395. doi:10.1038/s41598-023-31571-2
49. Aizawa S, Harada T, Kanbe E, et al. Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity. Experimental hematology. Nov 2005;33(11):1292-8. doi:10.1016/j.exphem.2005.07.008
50. Mentzer WC, Jr., Baehner RL, Schmidt-Schönbein H, Robinson SH, Nathan DG. Selective reticulocyte destruction in erythrocyte pyruvate kinase deficiency. The Journal of clinical investigation. Mar 1971;50(3):688-99. doi:10.1172/jci106539
51. Bowman HS, Oski FA. Laboratory studies of erythrocytic pyruvate kinase deficiency. Pathogenesis of the hemolysis. American journal of clinical pathology. Aug 1978;70(2):259-70. doi:10.1093/ajcp/70.2.259
52. Oski FA, Nathan DG, Sidel VW, Diamond LK. EXTREME HEMOLYSIS AND RED-CELL DISTORTION IN ERYTHROCYTE PYRUVATE KINASE DEFICIENCY. I. MORPHOLOGY, ERYTHROKINETICS AND FAMILY ENZYME STUDIES. The New England journal of medicine. May 14 1964;270:1023-30. doi:10.1056/nejm196405142702001
53. van Beers EJ, van Straaten S, Morton DH, et al. Prevalence and management of iron overload in pyruvate kinase deficiency: report from the Pyruvate Kinase Deficiency Natural History Study. Haematologica. Feb 2019;104(2):e51-e53. doi:10.3324/haematol.2018.196295
54. Singer ST, Olivieri NE, Sweeters N, et al. Biotin-Labeled RBC Survival in Thalassemia and Impact of Treatment. Blood. 2004;104(11):3616-3616. doi:10.1182/blood.V104.11.3616.3616
55. Ribeil J-A, Arlet J-B, Dussiot M, Cruz Moura I, Courtois G, Hermine O. Ineffective Erythropoiesis in β-Thalassemia. The Scientific World Journal. 2013/03/28 2013;2013:394295. doi:10.1155/2013/394295
56. Chakraborty D, Bhattacharyya M. Antioxidant defense status of red blood cells of patients with beta-thalassemia and Ebeta-thalassemia. Clinica chimica acta; international journal of clinical chemistry. Mar 2001;305(1-2):123-9. doi:10.1016/s0009-8981(00)00428-9
57. Meral A, Tuncel P, Sürmen-Gür E, Ozbek R, Oztürk E, Günay U. Lipid peroxidation and antioxidant status in beta-thalassemia. Pediatric hematology and oncology. Dec 2000;17(8):687-93. doi:10.1080/08880010050211402
58. Ondei Lde S, Estevão Ida F, Rocha MI, et al. Oxidative stress and antioxidant status in beta-thalassemia heterozygotes. Revista brasileira de hematologia e hemoterapia. 2013;35(6):409-13. doi:10.5581/1516-8484.20130122
59. Cakmak A, Soker M, Koc A, Aksoy N. Prolidase activity and oxidative status in patients with thalassemia major. Journal of clinical laboratory analysis. 2010;24(1):6-11. doi:10.1002/jcla.20361
60. Manafikhi H, Drummen G, Palmery M, Peluso I. Total Antioxidant Capacity in beta-thalassemia: A systematic review and meta-analysis of case-control studies. Critical reviews in oncology/hematology. 2017/02/01/ 2017;110:35-42. doi:https://doi.org/10.1016/j.critrevonc.2016.12.007
61. Livrea MA, Tesoriere L, Pintaudi AM, et al. Oxidative Stress and Antioxidant Status in β-Thalassemia Major: Iron Overload and Depletion of Lipid-Soluble Antioxidants. Blood. 1996/11/01/ 1996;88(9):3608-3614. doi:https://doi.org/10.1182/blood.V88.9.3608.bloodjournal8893608
62. Hamed EA, ElMelegy NT. Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study. Italian journal of pediatrics. May 25 2010;36:39. doi:10.1186/1824-7288-36-39
63. Shekhar HU. Comment on: oxidative stress and antioxidant status in beta-thalassemia heterozygotes. Revista brasileira de hematologia e hemoterapia. 2013;35(6):385-6. doi:10.5581/1516-8484.20130125
64. Rice-Evans C, Baysal E. Iron-mediated oxidative stress in erythrocytes. Biochemical Journal. 1987;244(1):191-196. doi:10.1042/bj2440191
65. Jacob RA. The integrated antioxidant system. Nutrition Research. 1995/05/01/ 1995;15(5):755-766. doi:https://doi.org/10.1016/0271-5317(95)00041-G
66. Mihai S, Codrici E, Popescu ID, et al. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. Journal of immunology research. 2018;2018:2180373. doi:10.1155/2018/2180373
67. Li JH, Luo JF, Jiang Y, et al. Red Blood Cell Lifespan Shortening in Patients with Early-Stage Chronic Kidney Disease. Kidney & blood pressure research. 2019;44(5):1158-1165. doi:10.1159/000502525
68. Fishbane S, Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. American Journal of Kidney Diseases. 2018;71(3):423-435. doi:10.1053/j.ajkd.2017.09.026
69. Shih H-M, Wu C-J, Lin S-L. Physiology and pathophysiology of renal erythropoietin-producing cells. Journal of the Formosan Medical Association. 2018/11/01/ 2018;117(11):955-963. doi:https://doi.org/10.1016/j.jfma.2018.03.017
70. Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta haematologica. 2019;142(1):44-50. doi:10.1159/000496492
71. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010/12/02/ 2010;116(23): 4754-4761. doi:https://doi.org/10.1182/blood-2010-05-286260
72. Nguyen-Khoa T, Massy ZA, De Bandt JP, et al. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. Feb 2001;16(2):335-40. doi:10.1093/ndt/16.2.335
73. Gwozdzinski K, Pieniazek A, Gwozdzinski L. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. Oxidative medicine and cellular longevity. 2021;2021: 6639199. doi:10.1155/2021/6639199
74. Patel VP, Pandya PR, Raval DM, et al. Iron Status in Sickle Cell Anemia: Deficiency or Overload? Cureus. 2023/2/22 2023;15(2):e35310. doi:10.7759/cureus.35310
75. van Beers EJ, van Wijk R. Oxidative stress in sickle cell disease; more than a DAMP squib. Clinical hemorheology and microcirculation. 2018;68(2-3):239-250. doi:10.3233/ch-189010
76. Omena J, Cople-Rodrigues CDS, Cardoso J, et al. Serum Hepcidin Concentration in Individuals with Sickle Cell Anemia: Basis for the Dietary Recommendation of Iron. Nutrients. Apr 17 2018;10(4)doi:10.3390/nu10040498
77. Pulte D, Nagalla S, Caro J. Erythropoietin Levels in Patients with Sickle Cell Disease Not in Vaso-Occlusive Crisis. Blood. 2012;120(21):3242-3242. doi:10.1182/blood.V120.21.3242.3242
78. Nnodim J, Uche UB, Ifeoma UH, Chidozie NJ, Ifeanyi OE, Oluchi A-A. Hepcidin and Erythropoietin Level in Sickle Cell Disease. Journal of Advances in Medicine and Medical Research. 04/27 2015;8(3):261-265. doi:10.9734/BJMMR/2015/17480
79. Karafin MS, Koch KL, Rankin AB, et al. Erythropoietic drive is the strongest predictor of hepcidin level in adults with sickle cell disease. Blood cells, molecules & diseases. Dec 2015;55(4):304-7. doi:10.1016/j.bcmd.2015.07.010
80. Weiss G, Goodnough LT. Anemia of chronic disease. The New England journal of medicine. Mar 10 2005;352(10):1011-23. doi:10.1056/NEJMra041809
81. Weinberg ED. Iron depletion: A defense against intracellular infection and neoplasia. Life sciences. 1992/01/01/ 1992;50(18):1289-1297. doi: https://doi.org/10.1016/0024-3205(92)90279-X
82. Rogiers P, Zhang H, Leeman M, et al. Erythropoietin response is blunted in critically ill patients. Intensive care medicine. Feb 1997;23(2):159-62. doi:10.1007/s001340050310
83. La Ferla K, Reimann C, Jelkmann W, Hellwig-Bürgel T. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-kappaB. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. Nov 2002;16(13):1811-3. doi:10.1096/fj.02-0168fje
84. Macciò A, Madeddu C. Management of anemia of inflammation in the elderly. Anemia. 2012;2012:563251. doi:10.1155/2012/563251
85. Krzystek-Korpacka M, Neubauer K, Berdowska I, Zielinski B, Paradowski L, Gamian A. Impaired erythrocyte antioxidant defense in active inflammatory bowel disease: Impact of anemia and treatment. Inflammatory bowel diseases. 2009;16(9):1467-1475. doi:10.1002/ibd.21234
86. Libregts SF, Gutiérrez L, de Bruin AM, et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. Sep 1 2011;118(9):2578-88. doi:10.1182/blood-2010-10-315218
87. Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Seminars in cell & developmental biology. Mar 2015;39:35-42. doi:10.1016/j.semcdb.2015.01.009
88. Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxidants & redox signaling. Jul-Aug 2006;8(7-8):1183-92. doi:10.1089/ars.2006.8.1183
89. Kurtz A, Eckardt K-U. CHAPTER 95 - Hematopoiesis and the Kidney. In: Alpern RJ, Hebert SC, eds. Seldin and Giebisch's The Kidney (Fourth Edition). Academic Press; 2008:2681-2717.
90. Mitlyng BL, Singh JA, Furne JK, Ruddy J, Levitt MD. Use of breath carbon monoxide measurements to assess erythrocyte survival in subjects with chronic diseases. American journal of hematology. 2006;81(6):432-438. doi:https://doi.org/10.1002/ajh.20644
91. Hasan Y, Brown K. Viral eradication restores normal iron status in chronic hepatitis C patients with abnormal iron studies. Annals of Hepatology. 2020/07/01/ 2020;19(4):422-426. doi:https://doi.org/10.1016/j.aohep.2020.03.002
92. El Said HW, Abou Seif KH, Ahmed YS, et al. Relationship of serum haemojuvelin and hepcidin levels with iron level and erythropoietin requirement in prevalent hepatitis C virus positive haemodialysis patients. Nephrology. 2018;23(4):323-330. doi: https://doi.org/10.1111/nep.13010
93. Hörl WH, Schmidt A. Low hepcidin triggers hepatic iron accumulation in patients with hepatitis C. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. Jun 2014;29(6):1141-4. doi:10.1093/ndt/gft467
94. Nishina S, Hino K, Korenaga M, et al. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology. Jan 2008;134(1):226-38. doi:10.1053/j.gastro.2007.10.011
95. García-Monzón C, Majano PL, Zubia I, Sanz P, Apolinario A, Moreno-Otero R. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. Journal of hepatology. Feb 2000;32(2):331-8. doi:10.1016/s0168-8278(00) 80080-x
96. Farinati F, Cardin R, De Maria N, et al. Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. Journal of hepatology. Apr 1995;22(4):449-56. doi:10.1016/0168-8278(95)80108-1
97. Paracha UZ, Fatima K, Alqahtani M, et al. Oxidative stress and hepatitis C virus. Virology Journal. 2013/08/07 2013;10(1):251. doi:10.1186/1743-422X-10-251
98. Levent G, Ali A, Ahmet A, et al. Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. Journal of translational medicine. 2006/06/20 2006;4(1):25. doi:10.1186/1479-5876-4-25
99. Streiff MB, Mehta S, Thomas DL. Peripheral blood count abnormalities among patients with hepatitis C in the United States. Hepatology (Baltimore, Md). Apr 2002;35(4):947-52. doi:10.1053/jhep.2002.32486
100. Huang CF, Huang CI, Yeh ML, et al. Disease severity and erythropoiesis in chronic hepatitis C. Journal of gastroenterology and hepatology. Apr 2017;32(4):864-869. doi:10.1111/jgh.13600
101. Altintepe L, Kurtoglu E, Tonbul Z, Yeksan M, Yildiz A, Türk S. Lower erythropoietin and iron supplementation are required in hemodialysis patients with hepatitis C virus infection. Clinical nephrology. May 2004;61(5):347-51. doi:10.5414/cnp61347
102. Dieterich DT, Spivak JL. Hematologic Disorders Associated with Hepatitis C Virus Infection and Their Management. Clinical Infectious Diseases. 2003;37(4):533-541. doi:10.1086/376971
103. OMIM®: An Online Catalog of Human Genes and Genetic Disorders. Accessed January 12, 2024. https://www.omim.org/
104. Khan AA, Hadi Y, Hassan A, Kupec J. Polycythemia and Anemia in Hereditary Hemochromatosis. Cureus. Apr 9 2020;12(4):e7607. doi:10.7759/cureus.7607
105. Adams PC. Factors affecting the rate of iron mobilization during venesection therapy for genetic hemochromatosis. American journal of hematology. May 1998;58(1):16-9. doi:10.1002/(sici)1096-8652(199805)58:1<16::aid-ajh3>3.0.co;2-3
106. Feeney GP, Carter K, Masters GS, Jackson HA, Cavil I, Worwood M. Changes in erythropoiesis in hereditary hemochromatosis are not mediated by HFE expression in nucleated red cells. Haematologica. Feb 2005;90(2):180-7.
107. Ganz T. Hepcidin in iron metabolism. Current opinion in hematology. 2004;11(4)
108. Camaschella C. Treating iron overload with hepcidin. Blood. 2006;107(7):2595-2595. doi:10.1182/blood-2006-01-0189
109. Papanikolaou G, Tzilianos M, Christakis JI, et al. Hepcidin in iron overload disorders. Blood. May 15 2005;105(10):4103-5. doi:10.1182/blood-2004-12-4844
110. Young IS, Trouton TG, Torney JJ, McMaster D, Callender ME, Trimble ER. Antioxidant status and lipid peroxidation in hereditary haemochromatosis. Free Radical Biology and Medicine. 1994/03/01/ 1994;16(3):393-397. doi:https://doi.org/10.1016/0891-5849(94)90041-8
111. Dumont LJ, AuBuchon JP. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion. Jun 2008;48(6):1053-60. doi:10.1111/j.1537-2995.2008.01642.x
112. Hess JR. Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood transfusion = Trasfusione del sangue. Jun 2010;8 Suppl 3(Suppl 3):s9-15. doi:10.2450/2010.003s
113. Luten M, Roerdinkholder-Stoelwinder B, Schaap NP, de Grip WJ, Bos HJ, Bosman GJ. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion. Jul 2008;48(7):1478-85. doi:10.1111/j.1537-2995.2008.01734.x
114. Spinella PC, Doctor A, Blumberg N, Holcomb JB. Does the storage duration of blood products affect outcomes in critically ill patients? Transfusion. 2011;51(8):1644-1650. doi:https://doi.org/10.1111/j.1537-2995.2011.03245.x
115. Hunsicker O, Hessler K, Krannich A, et al. Duration of storage influences the hemoglobin rising effect of red blood cells in patients undergoing major abdominal surgery. Transfusion. Aug 2018;58(8):1870-1880. doi:10.1111/trf.14627
116. Barshtein G, Goldschmidt N, Pries AR, Zelig O, Arbell D, Yedgar S. Deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: A study with β-thalassemia major patients. American journal of hematology. Sep 2017;92(9):E559-e560. doi:10.1002/ajh.24821
117. Gilson CR, Kraus TS, Hod EA, et al. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion. Aug 2009;49(8):1546-53. doi:10.1111/j.1537-2995.2009.02173.x
118. Mock DM, Widness JA, Veng-Pedersen P, et al. Measurement of posttransfusion red cell survival with the biotin label. Transfusion medicine reviews. Jul 2014;28(3):114-25. doi:10.1016/j.tmrv.2014.03.003
119. Sparrow RL, Veale MF, Healey G, Payne KA. Red blood cell (RBC) age at collection and storage influences RBC membrane-associated carbohydrates and lectin binding. Transfusion. Jun 2007;47(6):966-8. doi:10.1111/j.1537-2995.2007.01230.x
120. Cohen RM, Franco RS, Khera PK, et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood. Nov 15 2008;112(10):4284-91. doi:10.1182/blood-2008-04-154112
121. Dern RJ, Brewer GJ, Wiorkowski JJ. Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vitro measures to red cell storageability. The Journal of laboratory and clinical medicine. Jun 1967;69(6):968-78.
122. Pasricha S-R, Frazer DM, Bowden DK, Anderson GJ. Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study. Blood. 2013;122(1):124-133. doi:10.1182/blood-2012-12-471441
123. Lorenz L, Müller KF, Poets CF, et al. Short-Term Effects of Blood Transfusions on Hepcidin in Preterm Infants. Neonatology. 2015;108(3):205-210. doi:10.1159/000437132
124. Liu J, Chen S, Ye X. The effect of red blood cell transfusion on plasma hepcidin and growth differentiation factor 15 in gastric cancer patients: a prospective study. Annals of translational medicine. Sep 2019;7(18):466. doi:10.21037/atm.2019.08.33
125. Zaman BA, Rasool SO, Abdo JM. The effect of erythroferrone suppression by transfusion on the erythropoietin–erythroferrone–hepcidin axis in transfusion-dependent thalassaemia: A pre–post cohort study. British journal of haematology. 2023;201(3):547-551. doi:https://doi.org/10.1111/bjh.18619
126. Boshuizen M, van Hezel ME, van Manen L, et al. The effect of red blood cell transfusion on iron metabolism in critically ill patients. Transfusion. Apr 2019;59(4):1196-1201. doi:10.1111/trf.15127
127. Kalteren WS, Bos AF, Bergman KA, van Oeveren W, Hulscher JBF, Kooi EMW. The short-term effects of RBC transfusions on intestinal injury in preterm infants. Pediatric research. 2023/04/01 2023;93(5):1307-1313. doi:10.1038/s41390-022-01961-9
128. Xu J-M, You L-W, Zhou X-F, et al. Fresh autologous blood transfusion reverses erythrocytes damage by reducing oxidative stress via promoting mitochondrial metabolism and M2 macrophages polarization. journal article. Archives of Medical Science. 2022;doi:10.5114/aoms/154020
129. van Beers EJ, Al-Samkari H, Grace RF, et al. P1565: mitapivat improves ineffective erythropoiesis and reduces iron overload in patients with pyruvate kinase deficiency. Hemasphere. Jun 2022;6(Suppl) doi:10.1097/01.Hs9.0000849116.94935.15
130. Al-Samkari H, Galactéros F, Glenthøj A, et al. Mitapivat versus Placebo for Pyruvate Kinase Deficiency. New England Journal of Medicine. 2022;386(15):1432-1442. doi:10.1056/NEJMoa2116634
131. Grace RF, Rose C, Layton DM, et al. Safety and Efficacy of Mitapivat in Pyruvate Kinase Deficiency. New England Journal of Medicine. 2019;381(10): 933-944. doi:10.1056/NEJMoa1902678
132. Mattè A, D'Alessandro A, Bertoldi M, et al. Mitapivat Treatment Increases β-Thalassemic Erythroblasts Energy Production and Responsiveness to Oxidative Stress. Blood. 2023;142(Supplement 1):3850-3850. doi:10.1182/blood-2023-185681
133. van Dijk MJ, Rab MAE, van Oirschot BA, et al. One-year safety and efficacy of mitapivat in sickle cell disease: follow-up results of a phase 2, open-label study. Blood advances. Dec 26 2023;7(24):7539-7550. doi:10.1182/bloodadvances.2023011477
134. Xu JZ, Conrey A, Frey I, et al. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease. Blood. Nov 10 2022;140(19):2053-2062. doi:10.1182/blood.2022015403
135. Matte A, Wilson AB, Gevi F, et al. Mitapivat reprograms the RBC metabolome and improves anemia in a mouse model of hereditary spherocytosis. JCI insight. 10/23/ 2023;8(20) doi:10.1172/jci.insight.172656
136. Quezado ZMN, Kamimura S, Smith M, et al. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model. Blood cells, molecules & diseases. Jul 2022;95:102660. doi:10.1016/j.bcmd.2022.102660
137. Matte A, Federti E, Kung C, et al. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model. The Journal of clinical investigation. 05/17/ 2021;131(10) doi:10.1172/JCI144206
138. Kuo KHM, Layton DM, Lal A, et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α-thalassaemia or β-thalassaemia: an open-label, multicentre, phase 2 study. Lancet (London, England). Aug 13 2022;400(10351):493-501. doi:10.1016/s0140-6736(22)01337-x
139. Musallam KM, Taher AT, Cappellini MD. Right in time: Mitapivat for the treatment of anemia in α- and β-thalassemia. Cell Rep Med. Oct 18 2022;3(10): 100790. doi:10.1016/j.xcrm.2022.100790
140. Kuo KHM. Pyruvate kinase activators: targeting red cell metabolism in thalassemia. Hematology (Amsterdam, Netherlands). 2023;2023(1):114-120. doi:10.1182/hematology.2023000468
141. Bunda A, Gao H, Burgwardt C, et al. AG-946, an Activator of Pyruvate Kinase, Improves Ineffective Erythropoiesis in the Bone Marrow of Mouse Models of Myelodysplastic Syndromes. Blood. 2023;142(Supplement 1):1854-1854. doi:10.1182/blood-2023-186197
142. Brown RCC, Saraf SL, Cruz K, et al. Activation of Pyruvate Kinase-R with Etavopivat (FT-4202) Is Well Tolerated, Improves Anemia, and Decreases Intravascular Hemolysis in Patients with Sickle Cell Disease Treated for up to 12 Weeks. Blood. 2021/11/23/ 2021;138:9. doi:https://doi.org/10.1182/blood-2021-147091
143. Schroeder P, Fulzele K, Forsyth S, et al. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease. Journal of Pharmacology and Experimental Therapeutics. 2022;380(3):210-219. doi:10.1124/jpet.121.000743
144. Shrestha A, Chi M, Wagner K, et al. FT-4202, an oral PKR activator, has potent antisickling effects and improves RBC survival and Hb levels in SCA mice. Blood advances. May 11 2021;5(9):2385-2390. doi:10.1182/bloodadvances.2020003604
145. Kaito M, Iwasa M, Kobayashi Y, et al. Iron reduction therapy by phlebotomy reduces lipid peroxidation and oxidative stress in patients with chronic hepatitis C. J Gastroenterol. Sep 2006;41(9):921-2. doi:10.1007/s00535-006-1871-5
146. Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses. Jan 28 2013;5(2):439-69. doi:10.3390/v5020439
147. Morales NP, Rodrat S, Piromkraipak P, Yamanont P, Paiboonsukwong K, Fucharoen S. Iron chelation therapy with deferiprone improves oxidative status and red blood cell quality and reduces redox-active iron in β-thalassemia/hemoglobin E patients. Biomedicine & Pharmacotherapy. 2022/01/01/ 2022;145:112381. doi:https://doi.org/10.1016/j.biopha.2021.112381
148. Kobune M, Kikuchi S, Iyama S, et al. Iron Chelation Therapy Could Rapidly Reduce Oxidative DNA Damage In CD34+ Hematopoietic Cells Before Decrease of Serum Ferritin Level. Blood. 2013;122(21):959-959. doi:10.1182/blood.V122.21.959.959
149. Cao H, Li C, Zhao J, Wang F, Tan T, Liu L. Enzymatic Production of Glutathione Coupling with an ATP Regeneration System Based on Polyphosphate Kinase. Applied biochemistry and biotechnology. Jun 2018;185(2):385-395. doi:10.1007/s12010-017-2664-4
150. Nagababu E, Fabry ME, Nagel RL, Rifkind JM. Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood cells, molecules & diseases. Jul-Aug 2008;41(1):60-6. doi:10.1016/j.bcmd.2007.12.003
151. Dröge W. Free radicals in the physiological control of cell function. Physiological reviews. Jan 2002;82(1):47-95. doi:10.1152/physrev.00018.2001
152. Akohoue SA, Shankar S, Milne GL, et al. Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatric research. Feb 2007;61(2):233-8. doi:10.1203/pdr.0b013e31802d7754
153. Shi Y, Tang M, Sun C, et al. ATP Mimics pH-Dependent Dual Peroxidase-Catalase Activities Driving H2O2 Decomposition. CCS Chemistry. 2019;1(4):373-383. doi:doi:10.31635/ccschem.019.20190017
154. Patel S, Das A, Meshram P, et al. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell biology and toxicology. Oct 2021;37(5):653-678. doi:10.1007/s10565-021-09605-0
155. Kung C, Hixon J, Choe S, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chemistry & biology. Sep 21 2012;19(9):1187-98. doi:10.1016/j.chembiol.2012.07.021
156. Warner SL, Carpenter KJ, Bearss DJ. Activators of PKM2 in cancer metabolism. Future medicinal chemistry. 2014;6(10):1167-1178. doi:10.4155/fmc.14.70
157. Rojas-Pirela M, Andrade-Alviárez D, Rojas V, et al. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biology. 2025;15(2):240239. doi:doi:10.1098/rsob.240239
158. Adem S, Rasul A, Riaz S, et al. Pyruvate kinase modulators as a therapy target: an updated patent review 2018-2023. Expert Opin Ther Pat. Oct 2024;34(10):953-962. doi:10.1080/13543776.2024.2403616
159. Chen DQ, Han J, Liu H, Feng K, Li P. Targeting pyruvate kinase M2 for the treatment of kidney disease. Frontiers in pharmacology. 2024;15:1376252. doi:10.3389/fphar.2024.1376252
160. Zhu H, Zhang H, Zhao XJ, et al. Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. Aug 28 2024;19(1):48. doi:10.1007/s11481-024-10138-6
161. Zhang JY, Wang YT, Sun L, Wang SQ, Chen ZS. Synthesis and clinical application of new drugs approved by FDA in 2022. Mol Biomed. Sep 4 2023;4(1):26. doi:10.1186/s43556-023-00138-y
162. Agios_Pharmaceuticals. Agios: 2021 Investor Day presntation, p.14. Agios. Accessed 02/09/2024, 2024. http://investor.agios.com/static-files/6e610f52-eefc-4eb0-977e-4da7fb64ac04
163. Novo_Nordisk. Novo Nordisk: Pipeline. Novo Nordisk. Accessed 02/09/2024, 2024. https://www.formatherapeutics.com/pipeline/
164. Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. Journal of Diabetes Investigation. 2021;12(5):697-709. doi:https://doi.org/10.1111/jdi.13478
165. Musallam KM, Taher AT, Cappellini MD. Right in time: Mitapivat for the treatment of anemia in α- and β-thalassemia. Cell Reports Medicine. 2022;3(10)doi:10.1016/j.xcrm.2022.100790
166. Lal A, Brown RCC, Coates TD, et al. Trial in Progress: A Phase 2, Open-Label Study Evaluating the Safety and Efficacy of the PKR Activator Etavopivat (FT-4202) in Patients with Thalassemia or Sickle Cell Disease. Blood. 2021/11/23/ 2021;138:4162. doi:https://doi.org/10.1182/blood-2021-145752
167. Angiari S, Runtsch MC, Sutton CE, et al. Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4+ T Cell Pathogenicity and Suppresses Autoimmunity. Cell metabolism. 2020/02/04/ 2020;31(2):391-405.e8. doi:https://doi.org/10.1016/j.cmet.2019.10.015
168. Angiari S, Runtsch MC, Sutton CE, et al. Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4(+) T Cell Pathogenicity and Suppresses Autoimmunity. Cell metabolism. Feb 4 2020;31(2):391-405.e8. doi:10.1016/j.cmet.2019.10.015
169. Wang H, Fan C, Chen X, et al. Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm. Inflammation. Oct 2024;47(5):1667-1684. doi:10.1007/s10753-024-02000-x
170. Almouhanna F, Blagojevic B, Can S, Ghanem A, Wölfl S. Pharmacological activation of pyruvate kinase M2 reprograms glycolysis leading to TXNIP depletion and AMPK activation in breast cancer cells. Cancer & Metabolism. 2021/01/22 2021;9(1):5. doi:10.1186/s40170-021-00239-8
171. Patel S, Globisch C, Pulugu P, Kumar P, Jain A, Shard A. Novel imidazopyrimidines-based molecules induce tetramerization of tumor pyruvate kinase M2 and exhibit potent antiproliferative profile. European Journal of Pharmaceutical Sciences. 2022/03/01/ 2022;170:106112. doi:https://doi.org/10.1016/j.ejps.2021.106112
172. Kumar SP, Jadav T, Sahu AK, et al. Assessment of metabolic stability and pharmacokinetics by LC-MS/MS and establishment of the safe dose of IMID-2, a novel anticancer molecule under drug discovery. Biomedical chromatography : BMC. Jun 2023;37(6):e5618. doi:10.1002/bmc.5618
173. Das R, Pulugu P, Singh AA, et al. Mechanistic Investigation of Thiazole-Based Pyruvate Kinase M2 Inhibitor Causing Tumor Regression in Triple-Negative Breast Cancer. Journal of medicinal chemistry. Mar 14 2024;67(5):3339-3357. doi:10.1021/acs.jmedchem.3c01512
174. Das R, Chatterjee DR, Kapoor S, Vyas H, Shard A. Novel sulfonamides unveiled as potent anti-lung cancer agents via tumor pyruvate kinase M2 activation. RSC Med Chem. Sep 19 2024;15(9):3070-3091. doi:10.1039/d4md00367e
175. Li RZ, Fan XX, Shi DF, et al. Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC). Chemical biology & drug design. Nov 2018;92(5):1851-1858. doi:10.1111/cbdd.13354
176. Mohammad GH, Vassileva V, Acedo P, et al. Targeting Pyruvate Kinase M2 and Lactate Dehydrogenase A Is an Effective Combination Strategy for the Treatment of Pancreatic Cancer. Cancers. Sep 16 2019;11(9) doi:10.3390/cancers11091372
177. Chen S, Zou R, Si J, et al. Icariin inhibits apoptosis in OGD-induced neurons by regulating M2 pyruvate kinase. IBRO Neurosci Rep. Jun 2024;16:535-541. doi:10.1016/j.ibneur.2024.04.005
178. Wang M, Li QJ, Zhao HY, Zhang JL. Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation. Human cell. May 2024;37(3):633-647. doi:10.1007/s13577-024-01033-6
179. Zhang ML, Li XP, Gao LF, et al. Nobiletin, an activator of the pyruvate kinase isozyme M1/M2 protein, upregulated the glycolytic signalling pathway and alleviated depressive-like behaviour caused by artificial light exposure at night in zebrafish. Food chemistry. Jan 15 2025;463(Pt 2):141328. doi:10.1016/j.foodchem.2024.141328
180. Zhu J, Chen H, Le Y, et al. Salvianolic acid A regulates pyroptosis of endothelial cells via directly targeting PKM2 and ameliorates diabetic atherosclerosis. Frontiers in pharmacology. 2022;13:1009229. doi:10.3389/fphar.2022.1009229
181. Lv X, Zhou H, Hu K, et al. Activation of PKM2 metabolically controls fulminant liver injury via restoration of pyruvate and reactivation of CDK1. Pharmacological research. 2021/10/01/ 2021;172:105838. doi:https://doi.org/10.1016/j.phrs.2021.105838
182. Minoretti P, Emanuele E. Reversing nonalcoholic fatty liver disease-related cirrhosis by inhibiting pyruvate kinase M2: a role for shikonin? Journal of gastroenterology and hepatology. Aug 2023;38(8):1447. doi:10.1111/jgh.16273
183. Matić J, Akladios F, Battisti UM, et al. Sulfone-based human liver pyruvate kinase inhibitors - Design, synthesis and in vitro bioactivity. European journal of medicinal chemistry. Apr 5 2024;269:116306. doi:10.1016/j.ejmech.2024.116306
184. Nain-Perez A, Nilsson O, Lulla A, et al. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. European journal of medicinal chemistry. Mar 15 2023;250:115177. doi:10.1016/j.ejmech.2023.115177
185. Zheng D, Jiang Y, Qu C, et al. Pyruvate Kinase M2 Tetramerization Protects against Hepatic Stellate Cell Activation and Liver Fibrosis. The American journal of pathology. 2020;190(11):2267-2281. doi:10.1016/j.ajpath.2020.08.002
186. Satyanarayana G, Turaga RC, Sharma M, et al. Pyruvate kinase M2 regulates fibrosis development and progression by controlling glycine auxotrophy in myofibroblasts. Theranostics. 2021;11(19):9331-9341. doi:10.7150/thno.60385
187. Wang H, Fan C, Chen X, et al. Pyruvate kinase M2 nuclear translocation regulate ferroptosis-associated acute lung injury in cytokine storm Pre-print; Research Square 2023;doi:10.21203/rs.3.rs-3507704/v1
188. van de Wetering C, Aboushousha R, Manuel AM, et al. Pyruvate Kinase M2 Promotes Expression of Proinflammatory Mediators in House Dust Mite–Induced Allergic Airways Disease. The Journal of Immunology. 2020;204(4):763-774. doi:10.4049/jimmunol.1901086
189. Jain M, Dhanesha N, Doddapattar P, et al. Smooth Muscle Cell–Specific PKM2 (Pyruvate Kinase Muscle 2) Promotes Smooth Muscle Cell Phenotypic Switching and Neointimal Hyperplasia. Arteriosclerosis, thrombosis, and vascular biology. 2021;41(5):1724-1737. doi:doi:10.1161/ATVBAHA.121.316021
190. Wubben TJ, Chaudhury S, Watch BT, et al. Development of Novel Small-Molecule Activators of Pyruvate Kinase Muscle Isozyme 2, PKM2, to Reduce Photoreceptor Apoptosis. Pharmaceuticals. 2023;16(5):705.
191. Zhou J, Rasmussen M, Ekström P. A Potential Neuroprotective Role for Pyruvate Kinase 2 in Retinal Degeneration. Advances in experimental medicine and biology. 2023;1415:479-483. doi:10.1007/978-3-031-27681-1_70
192. Guo L, Wang L, Qin G, et al. M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics. Journal of translational medicine. 2023/12/07 2023;21(1):888. doi:10.1186/s12967-023-04780-6
193. Le S, Zhang H, Huang X, et al. PKM2 Activator TEPP-46 Attenuates Thoracic Aortic Aneurysm and Dissection by Inhibiting NLRP3 Inflammasome-Mediated IL-1β Secretion. J Cardiovasc Pharmacol Ther. Jul 2020;25(4):364-376. doi:10.1177/1074248420919966
194. Nayak MK, Ghatge M, Flora GD, et al. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood. Mar 25 2021;137(12):1658-1668. doi:10.1182/blood.2020007140
195. Zeng C, Wu J, Li J. Pyruvate Kinase M2: A Potential Regulator of Cardiac Injury Through Glycolytic and Non-glycolytic Pathways. Journal of cardiovascular pharmacology. Jul 1 2024;84(1):1-9. doi:10.1097/fjc.0000000000001568
196. Ma L, Li H, Xu H, Liu D. The potential roles of PKM2 in cerebrovascular diseases. International immunopharmacology. Sep 30 2024;139:112675. doi:10.1016/j.intimp.2024.112675
197. He P, Zhang B, Jiang W, et al. PKM2 is a key factor to regulate neurogenesis and cognition by controlling lactate homeostasis. Stem cell reports. Jan 14 2025;20(1):102381. doi:10.1016/j.stemcr.2024.11.011
198. Fu J, Shinjo T, Li Q, et al. Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI insight. Mar 8 2022;7(5)doi:10.1172/jci.insight.155260
199. Tu C, Wang L, Wei L. The Role of PKM2 in Diabetic Microangiopathy. Diabetes, metabolic syndrome and obesity : targets and therapy. 2022;15:1405-1412. doi:10.2147/dmso.S366403
200. ABULIZI A, CARDONE RL, SIEBEL S, KUNG C, KIBBEY R. Small Molecule Activator of Pyruvate Kinase Regulates In Vivo Glucose Homeostasis. Diabetes. 2020;69(Supplement_1)doi:10.2337/db20-120-LB
201. Fang M, Zhou Y, He K, Lu Y, Tao F, Huang H. Glucose Metabolic Reprogramming in Microglia: Implications for Neurodegenerative Diseases and Targeted Therapy. Mol Neurobiol. Feb 22 2025; doi:10.1007/s12035-025-04775-y
202. Xie W, He Q, Zhang Y, et al. Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury. Cell death & disease. Oct 10 2023;14(10):663. doi:10.1038/s41419-023-06195-z
203. Feng J, Huang X, Peng Y, et al. Pyruvate kinase M2 modulates mitochondrial dynamics and EMT in alveolar epithelial cells during sepsis-associated pulmonary fibrosis. Journal of translational medicine. Feb 19 2025;23(1):205. doi:10.1186/s12967-025-06199-7
204. Hu Y, Tang J, Xu Q, et al. Role of pyruvate kinase M2 in regulating sepsis (Review). Molecular medicine reports. Oct 2024;30(4) doi:10.3892/mmr.2024.13309