Clarifying misconceptions in the medical use of shock waves and radial pressure waves: Insights into common errors and the physical principles behind them

Main Article Content

Achim M. Loske

Abstract

The clinical use of shock waves has evolved surprisingly since their introduction for kidney stone fragmentation in 1980, expanding into diverse fields including orthopedics, cardiology, dermatology, and erectile dysfunction. Emerging applications, such as Alzheimer’s disease therapy, appear promising. Despite this broad acceptance, the physical and biological mechanisms behind their therapeutic effects are not yet fully understood, particularly regarding the relevance of specific physical parameters. The introduction of devices that generate radial pressure waves has broadened the use of extracorporeal pressure wave therapy. However, it has also caused confusion about the distinction between shock waves and radial pressure waves. This has led to inconsistencies in protocol design, and outcome interpretation, ultimately hindering clinical progress. This article presents a physics-based overview of shock waves and radial pressure waves, focusing on their propagation through biological tissues and the associated secondary effects. Key parameters, such as energy flux density, focal zones, and impulse, are defined and contextualized to support accurate reporting. Emphasis is placed on the correct use of terminology, adherence to international standards, and the importance of proper training for healthcare providers using these technologies. Several common errors are analyzed, including issues related to pressure wave coupling, patient positioning, parameter selection, and improper device operation. By clarifying some physical principles and addressing common misunderstandings, this article aims to enhance the safe and effective use of extracorporeal pressure wave therapies. It advocates for a more rigorous approach to terminology, parameter reporting, and clinical implementation, with the goal of enhancing treatment outcomes.

Keywords: Shock waves, Radial pressure waves, Extracorporeal shock wave lithotripsy, Extracorporeal shock wave therapy

Article Details

How to Cite
LOSKE, Achim M.. Clarifying misconceptions in the medical use of shock waves and radial pressure waves: Insights into common errors and the physical principles behind them. Medical Research Archives, [S.l.], v. 13, n. 8, aug. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6799>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i8.6799.
Section
Research Articles

References

1. Chaussy C, Tailly G, Forssmann B, et al. Extracorporeal shock wave lithotripsy in a nutshell. 2nd ed. Munich: Dornier MedTech Europe GmbH; 2014.
2. Duarsa GW, Tirtayasa PM, Duarsa GW, Pribadi F. The efficacy and safety of several types of ESWL lithotripters on patient with kidney stone below 2 cm: a meta-analysis and literature review. Teikyo Med J. 2022;45:5613-5624.
3. Alić J, Heljić J, Hadžiosmanović O, et al. The efficiency of extracorporeal shock wave lithotripsy (ESWL) in the treatment of distal ureteral stones: an unjustly forgotten option? Cureus. 2022;14(9):e28671. doi:10.7759/cureus.28671
4. Sani A, Beheshti R, Khalichi R, et al. Urolithiasis management: an umbrella review on the efficacy and safety of extracorporeal shock wave lithotripsy (ESWL) versus the ureteroscopic approach. Urologia. 2025;92(2):294-311. doi:10.1177/03915603241313162
5. Patel N, Stephenson-Smith B, Roberts J, Kothari A. Extracorporeal shock wave lithotripsy: prematurely falling out of favour? A 7-year retrospective study from an Australian high-volume centre. BJUI Compass. 2023;5(4):460-465. doi:10.1002/bco2.314
6. Rassweiler J, Henkel T, Köhrmann K, Potempa D, Jünemann K, Alken P. Lithotripter technology. Present and future. J Endourol. 1992;6:1-13. doi:10.1089/end.1992.6.1
7. Ueberle F. Application of shock waves and pressure pulses in medicine. In: Kramme R, Hoffmann KP, Pozos RS, eds. Springer Handbook of Medical Technology. Berlin, Heidelberg: Springer-Verlag; 2011:641-675. doi:10.1007/978-3-540-74658-4_33
8. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International Publishing; 2017. doi:10.1007/978-3-319-47570-7_1
9. Oliveira B, Teixeira B, Magalhães M, Vinagre N, Fraga A, Cavadas V. Extracorporeal shock wave lithotripsy: retrospective study on possible predictors of treatment success and revisiting the role of non-contrast-enhanced computer tomography in kidney and ureteral stone disease. Urolithiasis. 2024;52(65). doi:10.1007/s00240-024-01570-7
10. Rola P, Wlodarczak A, Barycki M, Doroszko A. Use of the shock wave therapy in basic research and clinical applications – from bench to bedside. Biomedicines. 2022;10(568):10030568. doi:10.3390/biomedicines10030568
11. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am. 2018;100:251-263. doi:10.2106/JBJS.17.00661
12. Auersperg V, Trieb K. Extracorporeal shock wave therapy: an update. EFORT Open Rev. 2020;5:584-592. doi:10.1302/2058-5241.5.190067
13. Tenforde AS, Borgstrom HE, DeLuca S, et al. Best practices for extracorporeal shockwave therapy in musculoskeletal medicine: clinical application and training consideration. PM R. 2022;14(5):611-619. doi:10.1002/pmrj.12790
14. Császár NB, Schmitz C. Extracorporeal shock wave therapy in musculoskeletal disorders. J Orthop Surg Res. 2013;8:22. doi:10.1186/1749-799X-8-22
15. Natornicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J. 2012;2(1):33-37.
16. Wess O. Physics and technology of shock wave and pressure wave therapy. ISMST Newsletter. 2006;2(1):2-12.
17. Cleveland RO, McAteer JA. Physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Preminger GM, Kavoussi LR, eds. Smith’s Textbook of Endourology. 3rd ed. Chichester: Wiley-Blackwell; 2012:529-558. doi:10.1002/9781444345148.ch49
18. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol. 2007;33(8):1327-1335. doi:10.1016/j.ultrasmedbio.2007.02.014
19. Ueberle F, Rad AJ. Ballistic pain therapy devices: measurement of pressure pulse parameters. Biomed Tech (Berl). 2012;57(Suppl 1). doi:10.1515/bmt-2012-4439
20. Wess O, Mayer J. The interaction of shock waves with biological tissue – momentum transfer, the key for tissue stimulation and fragmentation. Int J Surg. 2025;111(4):2810-2818. doi:10.1097/JS9.0000000000002261
21. Pishchalnikov YA, Neucks JS, Von der Haar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly reduce the delivery of shock wave energy. J Urol. 2006;176(6 Pt 1):2706-2710. doi:10.1016/j.juro.2006.07.149
22. Zhong P, Cioanta I, Cocks FH, Preminger GM. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am. 1997;101(5 Pt 1):2940-2940. doi:10.1121/1.418522
23. Wan M, Feng Y, ter Haar G, eds. Cavitation in Biomedicine: Principles and Techniques. Heidelberg, New York, London: Springer; 2015. doi:10.1007/978-94-017-7255-6
24. Delacrétaz G, Rink K, Pittomvils G, Lafaut JP, Vandeursen H, Boving R. Importance of the implosion of ESWL-induced cavitation bubbles. Ultrasound Med Biol. 1995;21(1):97-103. doi:10.1016/0301-5629(94)00091-3
25. Bailey MR, Pishchalnikov YA, Sapozhnikov OA, et al. Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol. 2005;31(9):1245-1256. doi:10.1016/j.ultrasmedbio.2005.02.017
26. Philipp A, Delius M, Scheffczyk C, Vogel A, Lauterborn W. Interaction of lithotripter generated shock waves with air bubbles. J Acoust Soc Am. 1993;93(5):2496-2509. doi:10.1121/1.406853
27. Bailey MR, Pishchalnikov YA, Sapozhnikov OA, et al. Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol. 2005;31(9):1245-1256. doi:10.1016/j.ultrasmedbio.2005.02.017
28. Lauterborn W, Ohl CD. The peculiar dynamics of cavitation bubbles. Appl Sci Res. 1998;58(1):63-76. doi:10.1023/A:1000759029871
29. Feng Y, Zhao L, Ter Haar G, Wan M. Cavitation mechanobiology and applications. In: Wan M, Feng Y, Ter Haar G, eds. Cavitation in Biomedicine: Principles and Techniques. Heidelberg, New York, London: Springer; 2015:457-503. doi: 10.1007/978-94-017-7255-6_9
30. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am. 2007;121(2):1190-1202. doi:10.1121/1.2404894
31. Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol. 2004;172(1):349-354. doi:10.1097/01.ju.0000132356.97888.8b
32. Lukes P, Sunka P, Hoffer P, et al. Generation of focused shock waves in water for biomedical applications. In: Machala Z, Hensel K, Akishev Y, eds. Plasma for Bio-Decontamination, Medicine and Food Security, NATO ASI Series A. Rotterdam: Springer; 2012:403-416. doi:10.1007/978-94-007-2852-3_31
33. Wess O. Shock wave technology for stone fragmentation. In: Tiselius HG, ed. Urology. Germany: Level10 Buchverlag; 2013:14-39.
34. Ginter S, Burkhardt M, Vallon P. Richard Wolf: the piezoelectric ESWL—more than 20 years of clinical success worldwide. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU, eds. Therapeutic Energy: Applications in Urology II: Standards and Recent Developments. Stuttgart, New York: Thieme; 2010:87-92.
35. Katz JE, Clavijo RI, Rizk P, Ramasamy R. The basic physics of waves, soundwaves, and shockwaves for erectile dysfunction. Sex Med Rev. 2020;8(1):100-105. doi:10.1016/j.sxmr.2019.09.004
36. Chapelon JY, Cathignol D, Cain C, et al. New piezoelectric transducers for therapeutic ultrasound. Ultrasound Med Biol. 2000;26(1):153-159. doi:10.1016/s0301-5629(99)00120-9
37. Chitnis PV. Characterization and comparative analysis of extracorporeal shock wave devices [master's thesis]. Boston, MA: Boston University; 2002:108.
38. Tailly GG. Introduction to lithotripter technology. In: Loske AM, ed. New Trends in Shock Wave Applications to Medicine and Biotechnology. Kerala: Research Signpost; 2010:47-80.
39. Snicorius M, Drevinskaite M, Miglinas M, et al. A prospective study on the impact of clinical factors and adjusted triple D system for success rate of ESWL. Medicina. 2023;59(10):1827. doi:10.3390/medicina59101827
40. Eisenmenger W. The mechanism of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27(5):683-693. doi:10.1016/s0301-5629(01)00345-3
41. Sass K, Steffen K, Matura E, et al. Experiences with lithotripters: Measurement of standardized fragmentation. J Stone Dis. 1992;4(2):129-140.
42. International Electrotechnical Commission (IEC). IEC 61846:2025. Ultrasonics – Therapeutic Focused Short Pressure Pulse Sources – Characteristics of Fields. 2nd ed. Geneva: IEC; 2025.
43. Novak P. Physics: F-SW and R-SW. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, eds. Multidisciplinary Medical Applications. Heilbronn: Level10 Buchverlag; 2014:28-49.
44. International Electrotechnical Commission (IEC). IEC 63045:2020. Ultrasonics – Non-focusing Short Pressure Pulse Sources Including Ballistic Pressure Pulse Sources – Characteristics of Fields. Geneva: IEC; 2020.
45. Wess OJ, Ueberle F, Dührßen RN, et al. Working group technical developments—consensus report. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D, eds. High Energy Shock Waves in Medicine. Stuttgart: Thieme Verlag; 1997:59-71.
46. International Society for Medical Shockwave Treatment (ISMST). ISMST Guidelines for ESWT. 3rd ed. Düsseldorf: ISMST; 2024.
47. Rassweiler J, Henkel T, Köhrmann K, et al. Lithotripter technology. Present and future. J Endourol. 1992;6:1-13. doi:10.1089/end.1992.6.1
48. Denstedt JD, Clayman RV, Preminger GM. Efficiency quotient as a means of comparing lithotripters. J Endourol. 1990;4(2):100.
49. Taher MAME, Reda A, Latif AMA, Gammal MA. Comparison of different shock wave frequencies on stone disintegration in extracorporeal shock wave lithotripsy; 60, 80 and 100/min. Afr J Urol. 2021;27:22. doi:10.1186/s12301-020-00109-7
50. Weizer AZ, Zhong P, Preminger GM. New concepts in shock wave lithotripsy. Urol Clin North Am. 2007;34:375-382. doi:10.1016/j.ucl.2007.07.002
51. Madbouly K, El-Tiraifi AM, Seida M, et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol. 2005;173:127-130. doi:10.1097/01.ju.0000147820.36996.86
52. Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or at 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005;174:595-599. doi:10.1097/01.ju.0000165156.90011.95
53. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179:194-197. doi:10.1016/j.juro.2007.08.173
54. Lee JY, Moon YT. Evaluation of the optimal frequency of and pretreatment with shock waves in patients with renal stones. Korean J Urol. 2011;52:776-781. doi:10.4111/kju.2011.52.11.776
55. Koo V, Beattie I, Young M. Improved cost-effectiveness and efficiency with a slower shockwave delivery rate. BJU Int. 2010;105:692-696. doi:10.1111/j.1464-410X.2009.08919.x
56. Chaussy CG, Tiselius HG. What you should know about extracorporeal shock wave lithotripsy and how to improve your performance. In: Talati JJ, Tiselius HG, Albala D, Ye Z, eds. Urolithiasis. London: Springer; 2012:383-393. doi.org/10.1007/978-1-4471-4387-1_47
57. Sorensen MD, Bailey MR, Shah AR, His RS, Paun M, Harper JD. Quantitative assessment of shock wave lithotripsy accuracy and the effect of respiratory motion. J Endourol. 2012;26:1070-1074. doi:10.1089/end.2012.0042
58. Handa RK, Evan AP, Connors BA, et al. Efficacy of the Duet lithotripter using two energy sources for stone fragmentation. J Endourol. 2005;19(1):53-58.
59. Weizer AZ, Zhong P, Preminger GM. New concepts in shock wave lithotripsy. Urol Clin North Am. 2007;34:375-382. doi:10.1016/j.ucl.2007.07.002
60. Lee JY, Moon YT. Evaluation of the optimal frequency of and pretreatment with shock waves in patients with renal stones. Korean J Urol. 2011;52:776-781. doi:10.4111/kju.2011.52.11.776
61. Yilmaz E, Batislam E. Two different current topics during shock wave lithotripsy: frequency and analgesia. In: Loske AM, ed. New Trends in Shock Wave Applications to Medicine and Biotechnology. Kerala: Research Signpost; 2010:101-118.
62. Schnabel MJ, Brummeisl W, Burger M, et al. Stosswellenlithotripsie in Deutschland: ergebnisse einer deutschlandweiten Umfrage. Urologe. 2015;54:1277-1282. doi:10.1007/s00120-015-3920-2
63. Evan AP, Willis LR. Extracorporeal shock wave lithotripsy: complications. In: Smith AD, Badlani GH, Bagley DH, et al, eds. Smith’s Textbook of Endourology. Hamilton: BC Decker; 2007:353-365.
64. Demirci D, Sofikerim M, Yalcin E, Ekmekcioglu O, Gülmez I, Karacagil M Comparison of conventional and stepwise shockwave lithotripsy in management of urinary calculi. J Endourol. 2007;21:1407-1410. doi:10.1089/end.2006.0399
65. Brown RD, De S, Sarkissian C, Monga M. Best practices in shock wave lithotripsy: a comparison of regional practice patterns. Urology. 2014;83:1060-1064. doi:10.1016/j.urology.2014.01.017
66. Császár NBM, Angstman NB, Milz S, et al. Radial shock wave devices generate cavitation. PLoS One. 2015;10(10):e0140541. doi:10.1371/journal.pone.0140541
67. Cho JS, Kwon OB, Jeon SJ, Lee MY, Kim JM, Choi MJ. Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices. J Acoust Soc Korea. 2022;41(5):570-588. doi:10.7776/ASK.2022.41.5.570
68. Reinhardt N, Wegenaer J, de la Fuente M. Influence of the pulse repetition rate on the acoustic output of ballistic pressure wave devices. Sci Rep. 2022;12:18060. doi.org/10.1038/s41598-022-21595-5
69. Ramon S, Español A, Yebra M, et al. Ondas de choque. Evidencias y recomendaciones SETOC (Sociedad Española de Tratamientos con Ondas de Choque). Rehabilitación (Madr). 2021;55(4):291-300. doi.org/10.1016/j.rh.2021.02.002
70. Loske AM, Moya D. Shock waves and radial pressure waves: Time to put a clear nomenclature into practice. J Regen Sci. 2021;1(1):4-8. doi:10.13107/jrs.2021.v01.i01.005