Unraveling the Dual Nature of GPx4: From Ferroptosis Regulation to Therapeutic Innovation in Human Pathologies

Main Article Content

Chunxia Wu Yi Zhao Jianpeng Wang Leina Ma

Abstract

GPx4 (Glutathione peroxidase 4) is a Sec (selenocysteine)-dependent monomeric antioxidant enzyme capable of maintaining cellular redox homeostasis by catalyzing the reduction of lipid peroxides by GSH (glutathione). As a core regulatory node of the ferroptosis pathway, GPx4 not only directly affects apoptosis, but also deeply participates in tumorigenesis, cellular senescence, and other key biological processes by inhibiting the lipid peroxidation cascade; at the same time, GPx4 also exhibits a key targeting value in neurodegenerative diseases, metabolic disorders, and cardiovascular pathologies.The aim of this paper is to analyze the protein structure and biological function of GPx4, to systematically explore the core regulatory role of this enzyme in the ferroptosis pathway and its molecular mechanism in various diseases, and ultimately to break through the existing therapeutic bottlenecks based on the current progress of research, and to provide a new idea for the precise intervention strategy targeting GPx4.

Keywords: GPx4, Ferroptosis, Disease

Article Details

How to Cite
WU, Chunxia et al. Unraveling the Dual Nature of GPx4: From Ferroptosis Regulation to Therapeutic Innovation in Human Pathologies. Medical Research Archives, [S.l.], v. 13, n. 8, sep. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6801>. Date accessed: 17 nov. 2025. doi: https://doi.org/10.18103/mra.v13i8.6801.
Section
Review Articles

References

1. Flohe L, Toppo S, Orian L. The Glutathione Peroxidase Family: Discoveries and Mechanism. Free Radic Biol Med. 2022;187
2. Trenz TS, Delaix CL, Turchetto-Zolet AC et al. Going Forward and Back: the Complex Evolutionary History of the GPx. Biology (Basel). 2021;10
3. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from Pig Liver of a Protein Which Protects Liposomes and Biomembranes from Peroxidative Degradation and Exhibits Glutathione Peroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 1982;710:197-211
4. Pei J, Pan X, Wei G, Hua Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front Pharmacol. 2023;14
5. Brigelius-Flohé R, Kipp AP. Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. ENVIRONMENTAL STRESSORS IN BIOLOGY AND MEDICINE. 2012;1259:19-25
6. Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem Pharmacol. 2021;184
7. Brigelius-Flohe R. Glutathione Peroxidases and Redox-Regulated Transcription Factors. Oxidative Stress and Signal Transduction. 1997:415-440
8. Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother. 2024;174:116512
9. Kelner MJ, Montoya MA. Structural Organization of the Human Selenium-Dependent Phospholipid Hydroperoxide Glutathione Peroxidase Gene (gpx4): Chromosomal Localization to 19P13.3. Biochem Biophys Res Commun. 1998;249:53-55
10. Knopp EA, Arndt TL, Eng KL et al. Murine Phospholipid Hydroperoxide Glutathione Peroxidase: Cdna Sequence, Tissue Expression, and Mapping. Mamm Genome. 1999;10:601-605
11. Scheerer P, Borchert A, Krauss N et al. Structural Basis for Catalytic Activity and Enzyme Polymerization of Phospholipid Hydroperoxide Glutathione Peroxidase-4 (Gpx4). Biochemistry. 2007;46 31:9041-9
12. Roveri A, Maiorino M, Nisii C, UrsinI F. Purification and Characterization of Phospholipid Hydroperoxide Glutathione Peroxidase from Rat Testis Mitochondrial Membranes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1994;1208:211-221
13. Sok SPM, Pipkin K, Van Remmen H, Fan Z, Zhao M. Gpx4 Regulates Invariant NKT Cell Homeostasis and Function by Preventing Lipid Peroxidation and Ferroptosis. J Immunol. 2024;212
14. Li Z, Zhu Z, Liu Y, Liu Y, Zhao H. Function and Regulation of GPX4 in the Development and Progression of Fibrotic Disease. J Cell Physiol. 2022;237:2808-2824
15. Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66:229-239
16. Miao Y, Chen Y, Xue F et al. Contribution of Ferroptosis and GPX4’s Dual Functions to Osteoarthritis Progression. EBioMedicine. 2022;76:103847-103847
17. Seibt TM, Proneth B, Conrad M. Role of GPX4 in Ferroptosis and Its Pharmacological Implication. Free radical biology & medicine. 2018;133:144-152
18. Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics. 2019;19.0:e1800311
19. Imai H, Nakagawa Y. Biological Significance of Phospholipid Hydroperoxide Glutathione Peroxidase (phgpx, GPx4) in Mammalian Cells. Free Radic Biol Med. 2003;34
20. Brigelius-Flohe R. Tissue-Specific Functions of Individual Glutathione Peroxidases. Free Radic Biol Med. 1999;27
21. Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in Cell Death, Autophagy, and Disease. Autophagy. 2023;19:2621-2638
22. Arai M, Imai H, Sumi D et al. Import into Mitochondria of Phospholipid Hydroperoxide Glutathione Peroxidase Requires A Leader Sequence. Biochem Biophys Res Commun. 1996;227
23. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial Phospholipid Hydroperoxide Glutathione Peroxidase Inhibits the Release of Cytochrome C from Mitochondria by Suppressing the Peroxidation of Cardiolipin in Hypoglycaemia-Induced Apoptosis. Biochem J. 2000;351:183-193
24. Arai M, Imai H, Koumura T et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem. 1999;274(8):4924-33
25. Ursini F, Heim S, Kiess M et al. Dual Function of the Selenoprotein PHGPx During Sperm Maturation. Science. 1999;285:1393-1396
26. Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2023;1878
27. Conrad M, Moreno SG, Sinowatz F et al. The Nuclear Form of Phospholipid Hydroperoxide Glutathione Peroxidase is a Protein Thiol Peroxidase Contributing to Sperm Chromatin Stability. Mol Cell Biol. 2005;25:7637-7644
28. Puglisi R, Maccari I, Pipolo S et al. The Nuclear Form of Glutathione Peroxidase 4 is Associated with Sperm Nuclear Matrix and is Required for Proper Paternal Chromatin Decondensation at Fertilization. J Cell Physiol. 2011;227:1420-1427
29. Pfeifer H, Conrad M, Roethlein D et al. Identification of A Specific Sperm Nuclei Selenoenzyme Necessary for Protamine Thiol Cross-Linking During Sperm Maturation. ?The ?FASEB journal. 2001;15:1236-1238
30. 30. Pipolo S, Puglisi R, Mularoni V et al. Involvement of Sperm Acetylated Histones and the Nuclear Isoform of Glutathione Peroxidase 4 in Fertilization. J Cell Physiol. 2018;233
31. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 2020;152:175-185
32. Maiorino M, Thomas JP, Girotti AW, Ursini F. Reactivity of Phospholipid Hydroperoxide Glutathione Peroxidase with Membrane and Lipoprotein Lipid Hydroperoxides. Free Radical Research Communications. 1991;12:131-135
33. Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective Action of Phospholipid Hydroperoxide Glutathione Peroxidase Against Membrane-Damaging Lipid Peroxidation. in Situ Reduction of Phospholipid and Cholesterol Hydroperoxides. Journal of biological chemistry? The ?Journal of biological chemistry. 1990;265:454-461
34. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Current Topics in Microbiology and Immunology Apoptotic and Non-apoptotic Cell Death. 2016:143-170
35. Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxidants & Redox Signaling. 2018;29:61-74
36. Wang X, Chen T, Chen S et al. STING Aggravates Ferroptosis-Dependent Myocardial Ischemia-Reperfusion Injury by Targeting GPX4 for Autophagic Degradation. Signal Transduct Target Ther. 2025;10:136
37. Dong J, Ma F, Cai M et al. Heat Shock Protein 90 Interactome-Mediated Proteolysis Targeting Chimera (HIM-PROTAC) Degrading Glutathione Peroxidase 4 to Trigger Ferroptosis. J Med Chem. 2024;67
38. 38. Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat Rev Mol Cell Biol. 2021;22:266-282
39. Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020;32(6):920-937
40. 40. Dixon SJ. Ferroptosis: Bug or Feature? Immunol Rev. 2017;277
41. Song J, He Y, Zhou K et al. [Research Progress on the Mechanism of Ferroptosis in Septic Cardiomyopathy]. Zhonghua wei zhong bing ji jiu yi xue. 2022;34:1107-1111
42. Ma T, Du J, Zhang Y et al. GPX4-independent Ferroptosis—a New Strategy in Disease’s Therapy. Cell Death Discov. 2022;8:434
43. Gaschler MM, Andia AA, Liu H et al. FINO2 Initiates Ferroptosis Through GPX4 Inactivation and Iron Oxidation. Nat Chem Biol. 2018;14:507-515
44. Hassannia B, Vandenabeele P, Berghe TV. Targeting Ferroptosis to Iron out Cancer. Cancer Cell. 2019;35:830-849
45. 45. Yang WS, SriRamaratnam R, Welsch ME et al. Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell. 2014;156
46. Lewerenz J, Hewett SJ, Huang Y et al. The Cystine/Glutamate Antiporter System X(C)(-) in Health and Disease: from Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxid Redox Signal. 2013;18
47. Kim DH, Kim WD, Kim SK, Moon DH, Lee SJ. TGF-β1-mediated Repression of SLC7A11 Drives Vulnerability to GPX4 Inhibition in Hepatocellular Carcinoma Cells. Cell death and disease. 2020;11
48. Wu K, Yan M, Liu T et al. Creatine Kinase B Suppresses Ferroptosis by Phosphorylating GPX4 Through a Moonlighting Function. Nat Cell Biol. 2023;25
49. Chen Y, Xu W, Liu Y et al. Anomanolide C Suppresses Tumor Progression and Metastasis by Ubiquitinating GPX4-driven Autophagy-Dependent Ferroptosis in Triple Negative Breast Cancer. Int J Biol Sci. 2023;19
50. Huang B, Wang H, Liu S et al. Palmitoylation-dependent Regulation of GPX4 Suppresses Ferroptosis. Nat Commun. 2025;16:1-19
51. Zhao T, Yu Z, Zhou L et al. Regulating Nrf2-GPx4 Axis by Bicyclol Can Prevent Ferroptosis in Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Cell Death Discov. 2022;8
52. Liu J, Wei X, Xie Y et al. MDM4 Inhibits Ferroptosis in P53 Mutant Colon Cancer Via Regulating TRIM21/GPX4 Expression. Cell Death Dis. 2024;15
53. Fan Y, Wang Y, Dan W et al. PRMT5-mediated Arginine Methylation Stabilizes GPX4 to Suppress Ferroptosis in Cancer. Nat Cell Biol. 2025;27:641-653
54. Sanguigno L, Guida N, Anzilotti S et al. Stroke by Inducing HDAC9-dependent Deacetylation of HIF-1 and Sp1, Promotes TfR1 Transcription and GPX4 Reduction, Thus Determining Ferroptotic Neuronal Death. Int J Biol Sci. 2023;19:2695-2710
55. He G, Bao N, Wang S et al. Ketamine Induces Ferroptosis of Liver Cancer Cells by Targeting Lncrna PVT1/miR-214-3p/GPX4. Drug Des Dev Ther. 2021;Volume 15:3965-3978
56. 56. Li X, Quan P, Si Y et al. The microRNA-211-5p/P2RX7/ERK/GPX4 axis regulates epilepsy-associated neuronal ferroptosis and oxidative stress. J Neuroinflammation. 2024;21(1):13
57. Tan Y, Jiang B, Feng W et al. Circ0060467 Sponges Mir-6805 to Promote Hepatocellular Carcinoma Progression Through Regulating AIFM2 and GPX4 Expression. Aging-US. 2024;16
58. Min L, Yuanzhen C, Weikun H et al. The RNA-binding Protein SND1 Promotes the Degradation of GPX4 by Destabilizing the HSPA5 Mrna and Suppressing HSPA5 Expression, Promoting Ferroptosis in Osteoarthritis Chondrocytes. Inflamm Res. 2022;71:461-472
59. Doll S, Freitas FP, Shah R et al. FSP1 is a Glutathione-Independent Ferroptosis Suppressor. Nature. 2019;575:693-698
60. Lv Y, Liang C, Sun Q et al. Structural Insights into FSP1 Catalysis and Ferroptosis Inhibition. Nat Commun. 2023;14
61. Bersuker K, Hendricks JM, Li Z et al. The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature. 2019;575:688-692
62. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 As a Biomarker and Contributor of Ferroptosis. Biochem Biophys Res Commun. 2016;478:1338-1343
63. Kagan VE, Mao G, Qu F et al. Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nat Chem Biol. 2016;13:81-90
64. Doll S, Proneth B, Tyurina YY et al. ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nat Chem Biol. 2016;13:91-98
65. Stockwell BR, Angeli JPF, Bayir H et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171
66. O'Flaherty C, Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: the Protection of Mammalian Spermatozoa Against Oxidative Stress. Reproduction. 2022;164:F67-F78
67. Li H, Sun Y, Yao Y et al. USP8-governed GPX4 Homeostasis Orchestrates Ferroptosis and Cancer Immunotherapy. Proceedings of the National Academy of Sciences. 2024;121
68. Li J, Liu J, Zhou Z et al. Tumor-specific GPX4 Degradation Enhances Ferroptosis-Initiated Antitumor Immune Response in Mouse Models of Pancreatic Cancer. Sci Transl Med. 2023;15
69. Chen Z, Shan J, Chen M et al. Targeting GPX4 to Induce Ferroptosis Overcomes Chemoresistance Mediated by the PAX8-AS1/GPX4 Axis in Intrahepatic Cholangiocarcinoma. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2025:e01042
70. Jehl A, Conrad O, Burgy M et al. Blocking EREG/GPX4 Sensitizes Head and Neck Cancer to Cetuximab Through Ferroptosis Induction. Cells. 2023;12
71. Ma C, Lv Q, Zhang K et al. NRF2-GPX4/SOD2 Axis Imparts Resistance to EGFR-tyrosine Kinase Inhibitors in Non-Small-cell Lung Cancer Cells. Acta Pharmacol Sin. 2020;42:613-623
72. Zheng C, Wang C, Sun D et al. Structure-activity Relationship Study of RSL3-based GPX4 Degraders and Its Potential Noncovalent Optimization. Eur J Med Chem. 2023;255
73. Ma F, Li Y, Cai M et al. ML162 Derivatives Incorporating a Naphthoquinone Unit As Ferroptosis/apoptosis Inducers: Design, Synthesis, Anti-Cancer Activity, and Drug-Resistance Reversal Evaluation. Eur J Med Chem. 2024;270
74. Yuan J, Liu C, Jiang C et al. RSL3 Induces Ferroptosis by Activating the NF-κB Signalling Pathway to Enhance the Chemosensitivity of Triple-Negative Breast Cancer Cells to Paclitaxel. Sci Rep. 2025;15
75. Province BRCA, Aihua H, Hassan KNU. Metformin Induces Ferroptosis Byinhibiting UFMylation of SLC7A11 in Breast Cancer. J Exp Clin Cancer Res. 2021;40
76. Wang S, Le Zhu, Li T et al. Disruption of MerTK Increases the Efficacy of Checkpoint Inhibitor by Enhancing Ferroptosis and Immune Response in Hepatocellular Carcinoma. Cell Rep Med. 2024;5
77. Yong Y, Yan L, Wei J et al. A Novel Ferroptosis Inhibitor, Thonningianin A, Improves Alzheimer's Disease by Activating GPX4. Theranostics. 2024;14
78. 78. Costa I, Barbosa DJ, Benfeito S et al. Molecular Mechanisms of Ferroptosis and Their Involvement in Brain Diseases. Pharmacol Ther. 2023;244
79. Lv Q, Tao K, Yao X et al. Melatonin MT1 Receptors Regulate the Sirt1/Nrf2/Ho-1/Gpx4 Pathway to Prevent Α-Synuclein-induced Ferroptosis in Parkinson's Disease. J Pineal Res. 2024;76:e12948
80. Park T, Park JH, Lee GS et al. Quantitative Proteomic Analyses Reveal That GPX4 Downregulation During Myocardial Infarction Contributes to Ferroptosis in Cardiomyocytes. Cell Death and Disease. 2019;10
81. Yu Q, Zhang N, Gan X et al. EGCG Attenuated Acute Myocardial Infarction by Inhibiting Ferroptosis Via Mir-450B-5p/acsl4 Axis. Phytomedicine. 2023;119
82. Wei C, Xiao Z, Zhang Y et al. Itaconate Protects Ferroptotic Neurons by Alkylating GPx4 Post Stroke. Cell Death Differ. 2024;31
83. Luo X, Wang Y, Zhu X et al. MCL Attenuates Atherosclerosis by Suppressing Macrophage Ferroptosis Via Targeting KEAP1/NRF2 Interaction. Redox Biol. 2023;69:102987-102987
84. Xu X, Xu X, Ma M et al. The Mechanisms of Ferroptosis and Its Role in Atherosclerosis. Biomed Pharmacother. 2024;171:116112-116112
85. Ling H, Li M, Yang C et al. Glycine Increased Ferroptosis Via SAM-mediated GPX4 Promoter Methylation in Rheumatoid Arthritis. Rheumatology (Oxford). 2022;61:4521-4534
86. Ling Y, Yang Y, Ren N et al. Jinwu Jiangu Capsule Attenuates Rheumatoid Arthritis Via the SLC7A11/GSH/GPX4 Pathway in M1 Macrophages. Phytomedicine. 2024;135
87. Mayr L, Grabherr F, Rzler JS et al. Dietary Lipids Fuel GPX4-restricted Enteritis Resembling Crohn’s Disease. Nat Commun. 2020;11
88. Li P, Jiang M, Li K et al. Glutathione Peroxidase 4–regulated Neutrophil Ferroptosis Induces Systemic Autoimmunity. Nat Immunol. 2021;22:1107-1117
89. Cai W, Wu S, Ming X et al. IL6 Derived from Macrophages under Intermittent Hypoxia Exacerbates NAFLD by Promoting Ferroptosis Via MARCH3‐Led Ubiquitylation of GPX4. Adv Sci (Weinh). 2024;11
90. Xing G, Meng L, Cao S et al. PPARalpha alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 2022;23(8):e52280
91. Borchert A, Kalms J, Roth SR et al. Crystal Structure and Functional Characterization of Selenocysteine-Containing Glutathione Peroxidase 4 Suggests an Alternative Mechanism of Peroxide Reduction. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2018;1863:1095-1107
92. Moosmayer D, Hilpmann A, Hoffmann J et al. Crystal Structures of the Selenoprotein Glutathione Peroxidase 4 in Its Apo Form and in Complex with the Covalently Bound Inhibitor ML162. Acta Crystallographica Section D Structural Biology. 2021;77:237-248
93. Yang WS, Stockwell BR. Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. CHEMISTRY & BIOLOGY. 2008;15
94. Weiwer M, Bittker JA, Lewis TA et al. Development of Small-Molecule Probes That Selectively Kill Cells Induced to Express Mutant Ras. Bioorg Med Chem Lett. 2012;22
95. Chen T, Leng J, Tan J et al. Discovery of Novel Potent Covalent Glutathione Peroxidase 4 Inhibitors As Highly Selective Ferroptosis Inducers for the Treatment of Triple-Negative Breast Cancer. J Med Chem. 2023;66:10036-10059
96. Wang H, Wang C, Li B et al. Discovery of ML210-Based Glutathione Peroxidase 4 (GPX4) Degrader Inducing Ferroptosis of Human Cancer Cells. Eur J Med Chem. 2023;254
97. Kathman SG, Cravatt BF. A Masked Zinger to Block GPX4. Nat Chem Biol. 2020;16:482-483
98. Karaj E, Sindi SH, Kuganesan N et al. Tunable Cysteine-Targeting Electrophilic Heteroaromatic Warheads Induce Ferroptosis. J Med Chem. 2022;65
99. Yamada M, Hirose Y, Lin B et al. Design, Synthesis, and Monoamine Oxidase B Selective Inhibitory Activity of N-Arylated Heliamine Analogues. ACS Med Chem Lett. 2022;13:1582-1590
100. Luo T, Zheng Q, Shao L et al. Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis in Vivo. Angewandte Chemie International Edition. 2022;61
101. Zheng C, Wang C, Sun D et al. Structure-activity Relationship Study of RSL3-based GPX4 Degraders and Its Potential Noncovalent Optimization. Eur J Med Chem. 2023;255
102. Liu J, Li J, Kang R, Tang D. Cell Type-Specific Induction of Ferroptosis to Boost Antitumor Immunity. Oncoimmunology. 2023;12
103. Bian Y, Shan G, Bi G et al. Targeting ALDH1A1 to Enhance the Efficacy of KRAS-targeted Therapy Through Ferroptosis. Redox Biol. 2024;77
104. Yoshioka H, Kawamura T, Muroi M et al. Identification of a Small Molecule That Enhances Ferroptosis Via Inhibition of Ferroptosis Suppressor Protein 1 (FSP1). ACS Chem Biol. 2022;17:483-491
105. Nakamura T, Hipp C, O ASDM et al. Phase Separation of FSP1 Promotes Ferroptosis. Nature. 2023;619
106. Yao L, Yang N, Zhou W et al. Exploiting Cancer Vulnerabilities by Blocking of the DHODH and GPX4 Pathways: A Multifunctional Bodipy/PROTAC Nanoplatform for the Efficient Synergistic Ferroptosis Therapy. Adv Healthc Mater. 2023;12
107. Yang F, Xiao Y, Ding J et al. Ferroptosis Heterogeneity in Triple-Negative Breast Cancer Reveals an Innovative Immunotherapy Combination Strategy. Cell Metab. 2022;35:84-100.e8
108. Liu S, Zhang H, Li J et al. Tubastatin A Potently Inhibits GPX4 Activity to Potentiate Cancer Radiotherapy Through Boosting Ferroptosis. Redox Biol. 2023;62:102677-102677