Personal identification through Hunter–Schreger bands of dental enamel. Developing Algorithms for Automated Image Processing and Comparison

Main Article Content

Giovani Bressan Fogalli Sergio Roberto Peres Line

Abstract

Tooth enamel is the hardest tissue in the human body, formed by prism layers in regularly alternating directions. These prisms form the Hunter-Schreger Band (HSB) pattern when underside illumination, which is composed of light and dark stripes resembling fingerprints. Hunter-Schreger Band patterns are highly variable and unique for each tooth and can be used for personal identification. Hunter-Schreger Band images of 115 teeth were captured with a Canon EOS 5D mark III camera coupled to an InfiniProbe TS-160 lens (Infinity Photo-Optical Company, Boulder, Co, USA). The algorithms were developed in Python 3.9 using image-specific libraries NumPy, Scikit-Image, OpenCV, SciPy and TensorFlow. The evaluation of performance of HSB filtering and binarization was performed visually and indirectly. The feature extraction and matching algorithms were created upon adaptations from fingerprint techniques and revealed as the result of matching evaluation an equal error rate of 0.061, when both enlightened sides of each tooth were used together in a sample of 115 extracted teeth. The pipeline developed here allows the capture, image treatment, and matching among the images stored in the database. This demonstrated the potential of the new biometric trait.

Keywords: Enamel microstrure, Hunter-Schreger bands, human identification

Article Details

How to Cite
FOGALLI, Giovani Bressan; PERES LINE, Sergio Roberto. Personal identification through Hunter–Schreger bands of dental enamel. Developing Algorithms for Automated Image Processing and Comparison. Medical Research Archives, [S.l.], v. 13, n. 7, july 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6802>. Date accessed: 06 dec. 2025. doi: https://doi.org/10.18103/mra.v13i7.6802.
Section
Research Articles

References

1. Perry WL, Bass WM, Riggsby WS, Sirotkin K. The auto degradation of deoxyribonucleic acid (DNA) in human rib bone and its relationship to the time interval since death. Journal of Forensic Sciences. 1988;33: 144-153.

2. Weicheng S, Tieniu T. Automated biometrics-based personal identification. Proceedings of the National Academy of Sciences USA. 1999;96: 11065-11066.

3. Sweet DJ, Sweet CHW. DNA analyses of dental pulp to link incinerated remains of homicide victim to crime scene. Journal of Forensic Sciences. 1995;40: 310-314.

5. Valenzuela A, Martin-de las Heras S, Marques T, Exposito N, Bohoyo JM. The application of dental methods of identification to human burn victims in a mass disaster. International Journal of Legal Medicine.2000;113(4): 236-239. https://doi.org/10.1007/s004149900099.

5. Koenigswald W, Pfretzchner H. Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature. 1987;106: 150-152.

6. Koenigswald W, Rose K. The enamel microstructure of the early Eocene Pantodont Coryphodon and the nature of the zigzag enamel. Journal of Mammalian Evolution. 2005;12: 419-432. https://doi.org/10.1007/s10914-005-6970-1.

7. Stefen C. Enamel microstructure of recent and fossil Canidae (Carnivora: Mammalia). Journal of Vertebrate Paleontology. 1999;19: 576-587.

8. Stefen C. Enamel structure of arctoid carnivora: Amphicyonidae, Ursidae, Procyonidae and Mustelidae. Journal. Mammalogy. 2001;82: 450-452.

9. Line SRP, Bergqvist LP. Enamel structure of Paleocene mammals of the São José de Itaboraí basin, Brazil. “Condylarthra”, Litopterna, Notoungulata, Xenungulata, and Astrapotheria. Journal of Vertebrate Paleontology. 2005;25(4): 924-928.

10. Ramenzoni LL, Line SRP. Automated biometrics-based personal identification of the Hunter-Schreger bands of dental enamel. Proceedings of the Royal Society B: Biological Sciences. 2006;273 (1590): 1155-1158. https://doi.org/10.1098/rspb.2005.3409

11. Arrieta ZL, Line SRP. Optimizing the analysis of dental enamel microstructure in intact teeth. Microscopy Research and Technique. 2017;80(7): 693-696. https://doi.org/10.1002/jemt.22852

12. Arrieta ZL, Fogalli GB, and Line SRP. Digital enhancement of dental enamel microstructure images from intact teeth. Microscopy Research and Technique. 2018;81:1036–1041. https://doi.org/10.1002/jemt.23070

13. Fogalli GB, Line SRP, Baum D. Segmentation of tooth enamel microstructure images using classical image processing and U-Net approaches. Frontiers Imaging. 2018;2023;2: 1215764. https://doi.org/10.1109/ICIP.2001.95810610.3389/fimag

14. Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and performance evaluation," in IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998;20: 777-789. https://doi.org/10.1109/34.709565

15. Zhang TY, Suen CY. A fast parallel algorithm for thinning digital patterns. Communications of the ACM. 1984;27: 236–239. https://doi.org/10.1145/357994.358023

16. Maltoni D, Maio D, Jain AK, Prabhakar, S. Handbook of fingerprint recognition. Springer London 2009. https://doi.org/10.1007/978-1-84882-254-2

17. Gamassi M, Piuri V, Sana D, Scotti F. Robust fingerprint detection for access control. In Proceedings of RoboCare Workshop. May. 2005. (pp. 1-3).

18. Cappelli R, Ferrara M, Maltoni D. Minutiae-based fingerprint matching. in: cross disciplinary biometric systems. Intelligent Systems Reference Library, 2012;37. Springer, Berlin, Heidelberg. https://doi.org/10.1109/ICIP.2001.958106

19. Jain A, Ross A, Prabhakar S. Fingerprint matching using minutiae and texture features. Proceedings of International Conference on Image Processing, 2001;3: 282 - 285 https://doi.org/10.1109/ICIP.2001.958106

20. Alshehri H, Hussain M, Aboalsamh H, AlZuair M. A large-scale study of fingerprint matching systems for sensor interoperability problem. Sensors. 2018;18(4): 1008. https://doi.org/10.3390/s18041008

21. Priesnitz J, Huesmann R, Rathgeb C, Buchmann N, Busch C. Mobile contactless fingerprint recognition: implementation, performance and usability aspects. Sensors 2022;22(3): 792. https://doi.org/10.3390/s22030792

22. Fogalli, G. B., Line, S. R. P., and Baum, D. (2022). “Automatic segmentation of tooth images: optimization of multi-parameter image processing workflow,” in EuroVis 2022 - Posters, eds M. Krone, S. Lenti, and J. Schmidt (Eindhoven: The Eurographics Association), 2022;11–13.

23. Wang, Z., Zou, Y., and Liu, P. X. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput. Biol. Med. 2021;134:1044 49. doi: 10.1016/j.compbiomed.2021.104449

24. Siddique, N., Paheding, S., Elkin, C. P., and Devabhaktuni, V. (2021). U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 2021;9: 82031–82057. doi: 10.1109/ACCESS.2021.3086020