Topical Spironolactone in Ocular Graft-versus-Host Disease

Main Article Content

Rugveda R. Patil Calvin W. Wong Nathan A. Seto Mitchell A. Watsky Dan S. Gombos Richard W. Yee

Abstract

Ocular graft-versus-host disease (oGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation that causes chronic inflammation, fibrosis, and dysfunction across multiple ocular tissues, including the lacrimal glands, cornea, conjunctiva, and meibomian glands. Common symptoms such as dryness, visual disturbances, and ocular discomfort are often resistant to standard treatment. Current therapies provide partial relief, rarely reverse structural damage, and typically target a limited range of immune or fibrotic pathways.


Spironolactone, a mineralocorticoid receptor antagonist, has emerged as a promising candidate due to its ability to block pathological mineralocorticoid signaling. This pathway becomes abnormally active in ocular tissues with low levels of the enzyme 11β-hydroxysteroid dehydrogenase type 2, leading to unchecked inflammation and tissue remodeling.


This review outlines the immunopathology of oGVHD in four key anatomical sites and evaluates spironolactone’s potential effects. In the lacrimal glands, spironolactone reduces inflammatory cytokines, limits fibroblast activation, and helps preserve tear production. In the cornea and conjunctiva, it supports epithelial barrier integrity, reduces surface inflammation and fibrosis, and enhances healing. In the meibomian glands, it improves lipid secretion and prevents glandular dropout. Preclinical and early clinical studies show that topical spironolactone improves both objective markers, such as corneal fluorescein staining and lid margin health, and subjective symptoms, with minimal side effects.


Spironolactone’s anti-inflammatory, antifibrotic, lipid-enhancing, and epithelial-protective properties position it as a potential disease-modifying therapy for oGVHD. While additional studies are needed to confirm its protective role and long-term efficacy, current evidence suggests that spironolactone may address important unmet needs in the management of this complex condition.

Keywords: ocular graft versus host disease, spironolactone, mineralocorticoid receptor, dry eye, inflammation

Article Details

How to Cite
PATIL, Rugveda R. et al. Topical Spironolactone in Ocular Graft-versus-Host Disease. Medical Research Archives, [S.l.], v. 13, n. 9, sep. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6822>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i9.6822.
Section
Research Articles

References

1. Tyndall A, Dazzi F. Chronic GVHD as an autoimmune disease. Best Practice & Research Clinical Haematology. 2008;21(2):281-289. doi:10.1016/j.beha.2008.03.003
2. Atkinson K, Horowitz M, Gale R, et al. Risk factors for chronic graft-versus-host disease after HLA-identical sibling bone marrow transplantation. Blood. 1990;75(12):2459-2464. doi:10.1182/blood.v75.12.2459.2459
3. Ochs LA, Miller WJ, Filipovich AH, et al. Predictive factors for chronic graft-versus-host disease after histocompatible sibling donor bone marrow transplantation. Bone Marrow Transplant. 1994;13(4):455-460.
4. Inamoto Y, Valdés-Sanz N, Ogawa Y, et al. Ocular Graft-versus-Host Disease after Hematopoietic Cell Transplantation: Expert Review from the Late Effects and Quality of Life Working Committee of the Center for International Blood and Marrow Transplant Research and Transplant Complications Working Party of the European Society of Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation. 2019;25(2):e46-e54. doi:10.1016/j.bbmt.2018.11.021
5. Munir SZ, Aylward J. A Review of Ocular Graft-Versus-Host Disease. Optom Vis Sci. 2017;94(5):545-555. doi:10.1097/opx.0000000000001071
6. Anderson NG, Regillo C. Ocular manifestations of graft versus host disease. Current Opinion in Ophthalmology. 2004;15(6):503-507. doi:10.1097/01.icu.0000143684.22362.46
7. Kezic JM, Wiffen S, Degli-Esposti M. Keeping an ‘eye’ on ocular GVHD. Clinical and Experimental Optometry. 2022;105(2):135-142. doi:10.1080/08164622.2021.1971047
8. Colarusso BA, Bligdon SM, Ganjei AY, Kwok A, Brocks D, Luo ZK. Ocular Graft-versus-Host Disease Underdiagnosis: A Survey Study. Clin Ophthalmol. 2022;16:1419-1426. doi:10.2147/OPTH.S359539
9. Singh RB, Cho W, Liu C, et al. Immunopathological mechanisms and clinical manifestations of ocular graft-versus-host disease following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2024;59(8):1049-1056. doi:10.1038/s41409-024-02321-3
10. Cheng X, Huang R, Huang S, et al. Recent advances in ocular graft-versus-host disease. Front Immunol. 2023;14:1092108. doi:10.3389/fimmu.2023.1092108
11. Hardy RS, Filer A, Cooper MS, et al. Differential expression, function and response to inflammatory stimuli of 11beta-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation. Arthritis Res Ther. 2006;8(4):R108. doi:10.1186/ar1993
12. Onyimba CU, Vijapurapu N, Curnow SJ, et al. Characterisation of the prereceptor regulation of glucocorticoids in the anterior segment of the rabbit eye. Journal of Endocrinology. 2006;190(2):483-493. doi:10.1677/joe.1.06840
13. Vassiliou AG, Athanasiou N, Vassiliadi DA, et al. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review. WJCCM. 2021;10(4):102-111. doi:10.5492/wjccm.v10.i4.102
14. The Multifaceted Mineralocorticoid Receptor. In: Comprehensive Physiology. 1st ed. Wiley; 2014:965-994. doi:10.1002/cphy.c130044
15. Pippal JB, Fuller PJ. Structure–function relationships in the mineralocorticoid receptor. Journal of Molecular Endocrinology. 2008;41(6):405-413. doi:10.1677/jme-08-0093
16. Tomlinson JW, Stewart PM. Cortisol metabolism and the role of 11β-hydroxysteroid dehydrogenase. Best Practice & Research Clinical Endocrinology & Metabolism. 2001;15(1):61-78. doi:10.1053/beem.2000.0119
17. Van Uum S. The role of 11β-hydroxysteroid dehydrogenase in the pathogenesis of hypertension. Cardiovascular Research. 1998;38(1):16-24. doi:10.1016/s0008-6363(97)00299-x
18. Suzuki T, Sasano H, Kaneko C, Ogawa S, Darnel AD, Krozowski ZS. Immunohistochemical distribution of 11β-hydroxysteroid dehydrogenase in human eye. Molecular and Cellular Endocrinology. 2001;173(1-2):121-125. doi:10.1016/s0303-7207(00)00403-2
19. Sato S, Ogawa Y, Wong CW, et al. Mineralocorticoid receptor expression and the effects of the mineralocorticoid receptor antagonist spironolactone in a murine model of graft-versus-host disease. The Ocular Surface. 2024;34:477-488. doi:10.1016/j.jtos.2024.10.004
20. Zhao M, Célérier I, Bousquet E, et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Invest. 2012;122(7):2672-2679. doi:10.1172/jci61427
21. Kadmiel M, Janoshazi A, Xu X, Cidlowski JA. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res. 2016;152:10-33. doi:10.1016/j.exer.2016.08.020
22. Sun XN, Li C, Liu Y, et al. T-Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon-Gamma. Circulation Research. 2017; 120(10):1584-1597. doi:10.1161/circresaha.116.310480
23. Usher MG, Duan SZ, Ivaschenko CY, et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120(9):3350-3364. doi:10.1172/jci41080
24. Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F. Mineralocorticoid receptor antagonists in diabetic kidney disease — mechanistic and therapeutic effects. Nat Rev Nephrol. 2022;18(1):56-70. doi:10.1038/s41581-021-00490-8
25. Mirshahi M, Mirshahi S, Golestaneh N, et al. Mineralocorticoid Hormone Signaling Regulates the ‘Epithelial Sodium Channel’ in Fibroblasts from Human Cornea. Ophthalmic Res. 2001;33(1):7-19. doi:10.1159/000055635
26. Patibandla S, Heaton J, Kyaw H. Spironolactone. In: StatPearls. StatPearls Publishing; 2025. Accessed July 9, 2025. http://www.ncbi.nlm.nih.gov/books/NBK554421/
27. Zhai S, Ma B, Chen W, Zhao Q. A comprehensive review of finerenone-a third-generation non-steroidal mineralocorticoid receptor antagonist. Front Cardiovasc Med. 2024;11:1476029. doi:10.3389/fcvm.2024.1476029
28. Watson AR, Ngo P. Spironolactone cost. Medical News Today. https://www.medicalnewstoday.com/articles/drugs-spironolactone-cost. June 27, 2025.
29. Woodward D, Murdock J. How Much Is Spironolactone Without Insurance? GoodRx. https://www.goodrx.com/spironolactone/spironolactone-cost-without-insurance?label_override=undefined. January 8, 2025.
30. Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacological Reviews. 2016;68(1):49-75. doi:10.1124/pr.115.011106
31. McDiarmid AK, Swoboda PP, Erhayiem B, et al. Myocardial Effects of Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction. JAHA. 2020;9(1). doi:10.1161/jaha.118.011521
32. Zhao M, Mantel I, Gelize E, et al. Mineralocorticoid receptor antagonism limits experimental choroidal neovascularization and structural changes associated with neovascular age-related macular degeneration. Nat Commun. 2019;10(1). doi:10.1038/s41467-018-08125-6
33. Wong CW, Yang AA, Liu CY, et al. Topical Spironolactone in the Treatment of Ocular Graft-Versus-Host Disease. Cureus. Published online September 12, 2023. doi:10.7759/cureus.45136
34. Watsky MA, Lu X, Chen Z, Yee R. Effects of Spironolactone on Corneal Epithelium may contribute to Beneficial Dry Eye Effects. Investigative Ophthalmology & Visual Science. 2020;61(7):151.
35. Ogawa Y. Sjögren’s Syndrome, Non-Sjögren’s Syndrome, and Graft-Versus-Host Disease Related Dry Eye. Invest Ophthalmol Vis Sci. 2018;59(14):DES71. doi:10.1167/iovs.17-23750
36. Ogawa Y, Kim SK, Dana R, et al. International Chronic Ocular Graft-vs-Host-Disease (GVHD) Consensus Group: Proposed Diagnostic Criteria for Chronic GVHD (Part I). Sci Rep. 2013;3(1). doi:10.1038/srep03419
37. Miller KL. Minimal Clinically Important Difference for the Ocular Surface Disease Index. Arch Ophthalmol. 2010;128(1):94. doi:10.1001/archophthalmol.2009.356
38. Agomo EU, Tan A, Champlin R, Kim SK. Role of Ocular Surface Disease Index (OSDI) in Chronic Ocular Graft-versus-Host Disease (OGVHD) Patients. Investigative Ophthalmology & Visual Science. 2008;49(13):2369.
39. Yang J, Zhao W, Liao Y, et al. Ocular surface disease index questionnaire as a sensitive test for primary screening of chronic ocular graft-versus-host disease. Ann Transl Med. 2022;10(16):855-855. doi:10.21037/atm-21-6946
40. Appenteng Osae E, Steven P. Meibomian Gland Dysfunction in Ocular Graft vs. Host Disease: A Need for Pre-Clinical Models and Deeper Insights. Int J Mol Sci. 2021;22(7):3516. doi:10.3390/ijms22073516
41. Appenteng Osae E, Steven P. Meibomian Gland Dysfunction in Ocular Graft vs. Host Disease: A Need for Pre-Clinical Models and Deeper Insights. IJMS. 2021;22(7):3516. doi:10.3390/ijms22073516
42. Tomlinson A, Bron AJ, Korb DR, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci. 2011;52(4):2006-2049. doi:10.1167/iovs.10-6997f
43. Pietraszkiewicz AA, Payne D, Abraham M, et al. Ocular surface indicators and biomarkers in chronic ocular graft-versus-host disease: a prospective cohort study. Bone Marrow Transplant. 2021;56(8):1850-1858. doi:10.1038/s41409-021-01254-5
44. Azari AA, Arabi A. Conjunctivitis: A Systematic Review. J Ophthalmic Vis Res. 2020;15(3):372-395. doi:10.18502/jovr.v15i3.7456
45. Rapoport Y, Freeman T, Koyama T, et al. Validation of International Chronic Ocular Graft-Versus-Host Disease (GVHD) Group Diagnostic Criteria as a Chronic Ocular GVHD-Specific Metric. Cornea. 2017;36(2):258-263. doi:10.1097/ico.0000000000001109
46. Macchi I, Bunya VY, Massaro-Giordano M, et al. A new scale for the assessment of conjunctival bulbar redness. The Ocular Surface. 2018;16(4):436-440. doi:10.1016/j.jtos.2018.06.003
47. Amparo F, Shikari H, Saboo U, Dana R. Corneal fluorescein staining and ocular symptoms but not Schirmer test are useful as indicators of response to treatment in chronic ocular GVHD. The Ocular Surface. 2018;16(3):377-381. doi:10.1016/j.jtos.2018.05.002
48. Shikari H, Antin JH, Dana R. Ocular Graft-versus-Host Disease: A Review. Survey of Ophthalmology. 2013;58(3):233-251. doi:10.1016/j.survophthal.2012.08.004
49. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group Report. Biology of Blood and Marrow Transplantation. 2015;21(3):389-401.e1. doi:10.1016/j.bbmt.2014.12.001
50. Li N, Deng XG, He MF. Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye. Int J Ophthalmol. 2012;5(4):478-481. doi:10.3980/j.issn.2222-3959.2012.04.14
51. Shen Z, Hu B, Tao L, et al. Development and validation of a diagnostic model for the identification of chronic ocular graft-versus-host disease (oGVHD). Front Med. 2023;10. doi:10.3389/fmed.2023.1277194
52. Curtis LM, Datiles MB, Steinberg SM, et al. Predictive models for ocular chronic graft-versus-host disease diagnosis and disease activity in transplant clinical practice. Haematologica. 2015;100(9):1228-1236. doi:10.3324/haematol.2015.124131
53. Ocular Graft Versus Host Disease - EyeWiki. Accessed July 9, 2025. https://eyewiki.org/Ocular_Graft_Versus_Host_Disease
54. Soleimani M, Mahdavi Sharif P, Cheraqpour K, et al. Ocular graft-versus-host disease (oGVHD): From A to Z. Survey of Ophthalmology. 2023;68(4):697-712. doi:10.1016/j.survophthal.2023.02.006
55. Kim SK. Ocular Graft vs. Host Disease. The Ocular Surface. 2005;3(4):S-177-S-179. doi:10.1016/s1542-0124(12)70250-1
56. Ogawa Y, Kuwana M, Yamazaki K, et al. Periductal Area as the Primary Site for T-Cell Activation in Lacrimal Gland Chronic Graft-Versus-Host Disease. Invest Ophthalmol Vis Sci. 2003;44(5):1888. doi:10.1167/iovs.02-0699
57. Hassan AS, Clouthier SG, Ferrara JLM, et al. Lacrimal Gland Involvement in Graft-Versus-Host Disease: A Murine Model. Invest Ophthalmol Vis Sci. 2005;46(8):2692. doi:10.1167/iovs.05-0040
58. Wang CC, Shi H, Guo K, et al. VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell. 2007;18(3):1056-1063. doi:10.1091/mbc.e06-10-0974
59. Chiang TL, Sun YC, Wu JH, Hsieh YT, Huang WL, Chen WL. The ocular graft-versus-host disease: the path from current knowledge to future managements. Eye. 2023;37(10):1982-1992. doi:10.1038/s41433-022-02288-9
60. Tappeiner C, Heiligenhaus A, Halter JP, Miserocchi E, Bandello F, Goldblum D. Challenges and concepts in the diagnosis and management of ocular graft-versus-host disease. Front Med. 2023;10. doi:10.3389/fmed.2023.1133381
61. Management of Ocular GVHD - EyeWiki. Accessed July 9, 2025. https://eyewiki.org/Management_of_Ocular_GVHD
62. Punctal Plugs for Dry Eyes: Types, Benefits, and Side Effects. Healthline. May 17, 2024. Accessed July 16, 2025. https://www.healthline.com/health/punctal-plugs-for-dry-eyes
63. Wang Y, Carreno-Galeano JT, Singh RB, Dana R, Yin J. Long-term Outcomes of Punctal Cauterization in the Management of Ocular Surface Diseases. Cornea. 2021;40(2):168-171. doi:10.1097/ico.0000000000002384
64. Considerations for Lacrimal Occlusion in the Moderate Dry Eye Patient. American Academy of Ophthalmology. July 1, 2016. Accessed July 16, 2025. https://www.aao.org/eyenet/article/considerations-lacrimal-occlusion-in-moderate-dry-
65. Quiroz B, Affeldt J. Complications Associated with Deep Thermal Punctal Occlusion. Investigative Ophthalmology & Visual Science. 2002;43(13):67.
66. Packer M, Lindstrom R, Thompson V, et al. Effectiveness and safety of a novel crosslinked hyaluronate canalicular gel occlusive device for dry eye. J Cataract Refract Surg. 2024;50(10):1051-1057. doi:10.1097/j.jcrs.0000000000001505
67. Fezza JP. Cross-linked hyaluronic acid gel occlusive device for the treatment of dry eye syndrome. Clin Ophthalmol. 2018;12:2277-2283. doi:10.2147/OPTH.S187963
68. Felberg S, Dantas PEC, Sato EH. Pilocarpina oral no tratamento do olho seco de pacientes com síndrome de Sjögren. Arquivos Brasileiros de Oftalmologia. 2022;85(3). doi:10.5935/0004-2749.20220069
69. Cevimeline (Evoxac): Uses, Side Effects, Alternatives & More. GoodRx. Accessed July 18, 2025. https://www.goodrx.com/cevimeline/what-is
70. Tyrvaya (varenicline) for the Treatment of Dry Eye Disease. Clinical Trials Arena. Accessed July 18, 2025. https://www.clinicaltrialsarena.com/projects/tyrvaya-varenicline-dry-eye-disease/
71. Hauswirth SG, Kabat AG, Hemphill M, Somaiya K, Hendrix LH, Gibson AA. Safety, adherence and discontinuation in varenicline solution nasal spray clinical trials for dry eye disease. J Comp Eff Res. 2023;12(6):e220215. doi:10.57264/cer-2022-0215
72. Ji MH, Moshfeghi DM, Periman L, et al. Novel Extranasal Tear Stimulation: Pivotal Study Results. Trans Vis Sci Tech. 2020;9(12):23. doi:10.1167/tvst.9.12.23
73. Masalkhi M, Wahoud N, Moran B, Elhassadi E. Evolving therapeutic paradigms in ocular graft-versus-host disease. Eye. 2024;38(17):3215-3217. doi:10.1038/s41433-024-03311-x
74. Yaguchi S, Ogawa Y, Shimmura S, et al. Angiotensin II Type 1 Receptor Antagonist Attenuates Lacrimal Gland, Lung, and Liver Fibrosis in a Murine Model of Chronic Graft-Versus-Host Disease. Yang PC, ed. PLoS ONE. 2013;8(6):e64724. doi:10.1371/journal.pone.0064724
75. Ohigashi H, Hashimoto D, Hayase E, et al. Ocular instillation of vitamin A–coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Advances. 2019;3(7):1003-1010. doi:10.1182/bloodadvances.2018028431
76. Philip AK. Nanotechnology-based Therapeutic Strategies for Dry Eye Disease. J Explor Res Pharmacol. 2023;000(000):000-000. doi:10.14218/jerp.2023.00034
77. Smadja DM, Chocron AF, Abreu MM. HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates. TH Open. 2025;09(CP). doi:10.1055/a-2599-4925
78. Harrell CR, Djonov V, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Ocular Graft-Versus-Host Disease. IJMS. 2022;23(21):13254. doi:10.3390/ijms232113254
79. Yaguchi S, Ogawa Y, Shimmura S, et al. Angiotensin II Type 1 Receptor Antagonist Attenuates Lacrimal Gland, Lung, and Liver Fibrosis in a Murine Model of Chronic Graft-Versus-Host Disease. Yang PC, ed. PLoS ONE. 2013;8(6):e64724. doi:10.1371/journal.pone.0064724
80. THE SPIRONOLACTONE/ARTHRITIS STUDY GROUP, Bendtzen K, Hansen PR, Rieneck K. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-α and interferon-γ, and has potential in the treatment of arthritis. Clinical and Experimental Immunology. 2003;134(1):151-158. doi:10.1046/j.1365-2249.2003.02249.x
81. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. The American Journal of Cardiology. 1993;71(3):A12-A16. doi:10.1016/0002-9149(93)90239-9
82. Wang WK, Wang B, Cao XH, Liu YS. Spironolactone alleviates myocardial fibrosis via inhibition of Ets‑1 in mice with experimental autoimmune myocarditis. Exp Ther Med. 2022;23(6). doi:10.3892/etm.2022.11296
83. Park SY, Suh KS, Jung WW, Chin SO. Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells. J Korean Med Sci. 2021;36(38):e265. doi:10.3346/jkms.2021.36.e265
84. Wong CW, Liu Y, Yee RW. The Use of 0.005 mg/mL Spironolactone Ophthalmic Solution in Ocular Graft-Versus-Host Disease. Published online 2021.
85. Le HL, Sato S, Wong C, Ogawa Y, Yee R. Topical Spironolactone Reduces Meibomian Gland Dropout and Corneal Epithelial Changes in Chronic Graft-Versus-Host Disease Mouse Models. Investigative Ophthalmology & Visual Science. 2024;65(7):5734.
86. Pellegrini M, Giannaccare G, Bernabei F, et al. Longitudinal Corneal Endothelial Cell Changes in Patients Undergoing Hematopoietic Stem Cell Transplantation. Cornea. 2021;40(4):462-466. doi:10.1097/ico.0000000000002441
87. Gomez A, Serrano A, Salero E, et al. Tumor necrosis factor-alpha and interferon-gamma induce inflammasome-mediated corneal endothelial cell death. Experimental Eye Research. 2021;207: 108574. doi:10.1016/j.exer.2021.108574
88. Perez VL, Lin L, Royer D. Immune Mediated Early Corneal Nerve Damage Ocular Graft-Versus-Host Disease. Investigative Ophthalmology & Visual Science. 2019;60(9):4280.
89. Lasagni Vitar RM, Bonelli F, Atay A, et al. Topical neurokinin-1 receptor antagonist Fosaprepitant ameliorates ocular graft-versus-host disease in a preclinical mouse model. Experimental Eye Research. 2021;212:108825. doi:10.1016/j.exer.2021.108825
90. Lasagni Vitar RM, Barbariga M, Fonteyne P, Bignami F, Rama P, Ferrari G. Modulating Ocular Surface Pain Through Neurokinin-1 Receptor Blockade. Invest Ophthalmol Vis Sci. 2021;62(3):26. doi:10.1167/iovs.62.3.26
91. Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J Immunol. 2017;199(5):1543-1552. doi:10.4049/jimmunol.1601751
92. Bonelli F, Lasagni Vitar RM, Merlo Pich FG, et al. Corneal endothelial cell reduction and increased Neurokinin-1 receptor expression in a graft-versus-host disease preclinical model. Experimental Eye Research. 2022;220:109128. doi:10.1016/j.exer.2022.109128
93. Srinivas SP. Cell signaling in regulation of the barrier integrity of the corneal endothelium. Experimental Eye Research. 2012;95(1):8-15. doi:10.1016/j.exer.2011.09.009
94. Gaddipati S, Rao P, Jerome AD, Burugula BB, Gerard NP, Suvas S. Loss of Neurokinin-1 Receptor Alters Ocular Surface Homeostasis and Promotes an Early Development of Herpes Stromal Keratitis. The Journal of Immunology. 2016;197(10):4021-4033. doi:10.4049/jimmunol.1600836
95. Demirsoy IH, Ferrari G. The NK-1 Receptor Signaling: Distribution and Functional Relevance in the Eye. Receptors. 2022;1(1):98-111. doi:10.3390/receptors1010006
96. Yu M, Lee SM, Lee H, et al. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. The American Journal of Pathology. 2020;190(1):125-133. doi:10.1016/j.ajpath.2019.09.020
97. Tandon A, Tovey JCK, Sharma A, Gupta R, Mohan RR. Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology. CMM. 2010;10(6):565-578. doi:10.2174/1566524011009060565
98. Herretes S, Ross DB, Duffort S, et al. Recruitment of Donor T Cells to the Eyes During Ocular GVHD in Recipients of MHC-Matched Allogeneic Hematopoietic Stem Cell Transplants. Invest Ophthalmol Vis Sci. 2015;56(4):2348-2357. doi:10.1167/iovs.14-15630
99. Giannaccare G, Pellegrini M, Taroni L, et al. Corneal biomechanical alterations in patients with chronic ocular Graft Versus-Host Disease. Taylor AW, ed. PLoS ONE. 2019;14(4):e0213117. doi:10.1371/journal.pone.0213117
100. Na KS, Kim MS. Allogeneic Serum Eye Drops for the Treatment of Dry Eye Patients with Chronic Graft-Versus-Host Disease. Journal of Ocular Pharmacology and Therapeutics. 2012;28(5):479-483. doi:10.1089/jop.2012.0002
101. Carreno-Galeano J, Johns L, Yin J, Dana R. Therapeutic effect of topical autologous serum on ocular graft-versus-host disease associated dry eyes. Investigative Ophthalmology & Visual Science. 22;63(7):1569-A0294.
102. Tahmaz V, Gehlsen U, Sauerbier L, et al. Treatment of severe chronic ocular graft-versus-host disease using 100% autologous serum eye drops from a sealed manufacturing system: a retrospective cohort study. Br J Ophthalmol. 2017;101(3):322-326. doi:10.1136/bjophthalmol-2015-307666
103. Kekre N, Kim HT, Ho VT, et al. Venous thromboembolism is associated with graft-versus-host disease and increased non-relapse mortality after allogeneic hematopoietic stem cell transplantation. Haematologica. 2017;102(7):1185-1191. doi:10.3324/haematol.2017.164012
104. Inamoto Y, Sun YC, Flowers MED, et al. Bandage Soft Contact Lenses for Ocular Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation. 2015;21(11):2002-2007. doi:10.1016/j.bbmt.2015.07.013
105. Magro L, Gauthier J, Richet M, et al. Scleral lenses for severe chronic GvHD-related keratoconjunctivitis sicca: a retrospective study by the SFGM-TC. Bone Marrow Transplant. 2017;52(6):878-882. doi:10.1038/bmt.2017.9
106. Peric Z, Skegro I, Durakovic N, et al. Severe Ocular Graft-Versus-Host Disease Successfully Treated with Amniotic Membrane Transplantation - Case Series. Blood. 2017;130:3270. doi:10.1182/blood.V130.Suppl_1.3270.3270
107. Bligdon SM, Colarusso BA, Ganjei AY, Kwok A, Luo ZK, Brocks D. Scleral Lens and Prosthetic Replacement of the Ocular Surface Ecosystem Utilization in Ocular Graft-versus-Host Disease: A Survey Study. Clin Ophthalmol. 2021;15:4829-4838. doi:10.2147/OPTH.S337824
108. Update on Scleral Lenses. American Academy of Ophthalmology. October 31, 2018. Accessed July 15, 2025. https://www.aao.org/eyenet/article/update-on-scleral-lenses
109. Bignami F, Lorusso A, Rama P, Ferrari G. Growth inhibition of formed corneal neovascularization following Fosaprepitant treatment. Acta Ophthalmologica. 2017;95(7). doi:10.1111/aos.13304
110. Kock MA, Hew BE, Bammert H, Fritzinger DC, Vogel CW. Structure and Function of Recombinant Cobra Venom Factor. Journal of Biological Chemistry. 2004;279(29):30836-30843. doi:10.1074/jbc.m403196200
111. Sharma S, Jabeen T, Singh RK, et al. Structural studies on the cobra venom factor: isolation, purification, crystallization and preliminary crystallographic analysis. Acta Crystallogr D Biol Crystallogr. 2001;57(4):596-598. doi:10.1107/s0907444901001342
112. Royer DJ, Echegaray-Mendez J, Lin L, et al. Complement and CD4+ T cells drive context-specific corneal sensory neuropathy. eLife. 2019;8. doi:10.7554/elife.48378
113. Rodrigues-Braz D, Gelize E, Clarin JP, et al. Efficacy of a new hydroxypropyl-gamma-cyclodextrin-based eyedrop of spironolactone in a rat model of corneal wound healing. Investigative Ophthalmology & Visual Science. 2024;65(7):40-44.
114. Akyuz C, Uzun O, Sunamak O, Velioglu-Ogunc A, Cetinel S. The Protective Effect of Spironolactone and Role of the Na /K -ATPase Pump on Intestinal Ischemia/Reperfusion Injury. jrp. 2018;22(1):102-108. doi:10.12991/jrp.2018.83
115. Wong CW, Wong BS, Ali W, De Jesus ML, Melber TA, Yee RW. Topical Spironolactone in the Treatment of Evaporative Dry Eye Disease. Cureus. Published online June 27, 2023. doi:10.7759/cureus.41038
116. Chatterjee D. A brief account on ocular graft versus host disease. Indian Journal of Ophthalmology. 2023;71(4):1115-1122. doi:10.4103/ijo.ijo_2839_22
117. Hayashi S, Shimizu E, Uchino M, et al. The Overlap Syndrome: A Case Report of Chronic Graft-Versus-Host Disease After the Development of a Pseudomembrane. Cornea. 2021;40(9):1188-1192. doi:10.1097/ico.0000000000002593
118. Gurumurthy S, Bhambhani V, Agarwal S, Srinivasan B, Iyer G. Tear cytokines and their relevance as biomarkers in ocular surface inflammatory diseases. JCOS. 2023;1(2):120-129. doi:10.4103/jcos.jcos_23_23
119. Ogawa Y, Shimmura S, Kawakita T, Yoshida S, Kawakami Y, Tsubota K. Epithelial Mesenchymal Transition in Human Ocular Chronic Graft-Versus-Host Disease. The American Journal of Pathology. 2009;175(6):2372-2381. doi:10.2353/ajpath.2009.090318
120. Nair S, Vanathi M, Mukhija R, Tandon R, Jain S, Ogawa Y. Update on ocular graft-versus-host disease. Indian Journal of Ophthalmology. 2021;69(5):1038-1050. doi:10.4103/ijo.ijo_2016_20
121. Kusne Y, Temkit M, Khera N, Patel DR, Shen JF. Conjunctival subepithelial fibrosis and meibomian gland atrophy in ocular graft-versus-host disease. The Ocular Surface. 2017;15(4):784-788. doi:10.1016/j.jtos.2017.08.002
122. Xiidra (lifitegrast ophthalmic solution) for the Treatment of Dry Eye Disease. Clinical Trials Arena. Accessed July 15, 2025. https://www.clinicaltrialsarena.com/projects/xiidra-lifitegrast-ophthalmic-solution-for-the-treatment-of-dry-eye-disease/
123. Semba C, Gadek T. Development of lifitegrast: a novel T-cell inhibitor for the treatment of dry eye disease. OPTH. Published online June 2016:1083. doi:10.2147/opth.s110557
124. Wong CW, Le HL, Gombos DS, Yee RW. Effects and Safety of 5% Lifitegrast Ophthalmic Solution in Patients With Dry Eye Disease Associated With Ocular Graft-Versus-Host Disease. Cureus. Published online August 8, 2024. doi:10.7759/cureus.66437
125. Side Effects of Xiidra® (lifitegrast ophthalmic solution) 5%. Accessed July 15, 2025. https://www.xiidra-ecp.com/safety/
126. Pharm.D GS. How much is Xiidra without insurance? The Checkup. February 6, 2024. Accessed July 15, 2025. https://www.singlecare.com/blog/xiidra-without-insurance/
127. Xiidra cost 2025: Savings tips and more. June 7, 2022. Accessed July 15, 2025. https://www.medicalnewstoday.com/articles/drugs-xiidra-cost
128. Dastjerdi MH, Hamrah P, Dana R. High-frequency Topical Cyclosporine 0.05% in the Treatment of Severe Dry Eye Refractory to Twice-daily Regimen. Cornea. 2009;28(10):1091-1096. doi:10.1097/ico.0b013e3181a16472
129. Sanz-Marco E, Udaondo P, García-Delpech S, Vazquez A, Diaz-Llopis M. Treatment of Refractory Dry Eye Associated with Graft Versus Host Disease with 0.03% Tacrolimus Eyedrops. Journal of Ocular Pharmacology and Therapeutics. 2013;29(8):776-783. doi:10.1089/jop.2012.0265
130. Koca DS, Dietrich-Ntoukas T. Frequency of Topical Immunomodulatory and Immunosuppressive Therapies for Ocular Chronic Graft-versus-Host Disease. JCM. 2024;13(16):4728. doi:10.3390/jcm13164728
131. Abud TB, Amparo F, Saboo US, et al. A Clinical Trial Comparing the Safety and Efficacy of Topical Tacrolimus versus Methylprednisolone in Ocular Graft-versus-Host Disease. Ophthalmology. 2016;123(7):1449-1457. doi:10.1016/j.ophtha.2016.02.044
132. Seo S, Lee S, Lee H, Yoon M, Kim D. Disrupted Skin Barrier is Associated with Burning Sensation after Topical Tacrolimus Application in Atopic Dermatitis. Acta Derm Venerol. 2017;97(8):957-958. doi:10.2340/00015555-2699
133. Joseph MA, Kaufman HE, Insler M. Topical Tacrolimus Ointment for Treatment of Refractory Anterior Segment Inflammatory Disorders. Cornea. 2005;24(4):417-420. doi:10.1097/01.ico.0000151507.49565.6e
134. Kim C, Surenkhuu B, Sarwar M, Sheth T, Mun C, Jain S. Safety and Efficacy of Deoxyribonuclease I (DNase) Eye Drops for Ocular Graft vs Host Disease (oGVHD). Investigative Ophthalmology & Visual Science. 2024;65(7):2969.
135. AN S, RAJU I, Surenkhuu B, et al. Sub-Anticoagulant Dose Heparin is a Potential Therapy for Tear Deficient Dry Eye Disease in patients with ocular Graft-Vs-Host Disease (oGVHD). Investigative Ophthalmology & Visual Science. 2018;59(9):3293.
136. Luo ZK, Domenech-Estarellas EA, Han A, et al. Efficacy and Safety of 1% Progesterone Gel to the Forehead for Ocular Chronic Graft-versus-Host Disease. Transplantation and Cellular Therapy. 2021;27(5):433.e1-433.e8. doi:10.1016/j.jtct.2021.02.008
137. Sato S, Shimizu E, He J, et al. Positive Effects of Oral Antibiotic Administration in Murine Chronic Graft-Versus-Host Disease. IJMS. 2021;22(7):3745. doi:10.3390/ijms22073745
138. Radkowski P, Derkaczew M, Mazuchowski M, et al. Antibiotic-Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics (Basel). 2024;13(6):503. doi:10.3390/antibiotics13060503
139. Perez VL, Mousa HM, Soifer M, et al. Meibomian Gland Dysfunction: A Route of Ocular Graft-Versus-Host Disease Progression That Drives a Vicious Cycle of Ocular Surface Inflammatory Damage. American Journal of Ophthalmology. 2023;247:42-60. doi:10.1016/j.ajo.2022.09.009
140. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic Study of Human Lacrimal Gland. Ophthalmology. 1995;102(4):678-686. doi:10.1016/s0161-6420(95)30971-2
141. Ban Y, Ogawa Y, Ibrahim OMA, et al. Morphologic evaluation of meibomian glands in chronic graft-versus-host disease using in vivo laser confocal microscopy. Mol Vis. 2011;17:2533-2543.
142. Yang F, Hayashi I, Sato S, et al. Eyelid blood vessel and meibomian gland changes in a sclerodermatous chronic GVHD mouse model. The Ocular Surface. 2022;26:328-341. doi:10.1016/j.jtos.2021.10.006
143. Que L, Zhang X, Li M. Single-Center Retrospective Study on Meibomian Gland Loss in Patients With Ocular Chronic Graft-Versus-Host Disease. Eye & Contact Lens: Science & Clinical Practice. 2018;44(2):S169-S175. doi:10.1097/icl.0000000000000445
144. Liu W, Lin T, Gong L. Meibomian gland dysfunction patients benefit in ocular parameters and tear chemokines after thermal pulsation treatment. Int J Med Sci. 2023;20(1):11-22. doi:10.7150/ijms.76603
145. Lee G. Evidence-Based Strategies for Warm Compress Therapy in Meibomian Gland Dysfunction. Ophthalmol Ther. 2024;13(9):2481-2493. doi:10.1007/s40123-024-00988-x
146. Bzovey B, Ngo W. Eyelid Warming Devices: Safety, Efficacy, and Place in Therapy. OPTO. 2022;Volume 14:133-147. doi:10.2147/opto.s350186
147. Chuckpaiwong V, Nonpassopon M, Lekhanont K, Udomwong W, Phimpho P, Cheewaruangroj N. Compliance with Lid Hygiene in Patients with Meibomian Gland Dysfunction. OPTH. 2022;Volume 16:1173-1182. doi:10.2147/opth.s360377
148. Azhar A, Taimuri MA, Oduoye MO, et al. MEIBO (perfluorohexyloctane): a novel approach to treating dry eye disease. Ann Med Surg (Lond). 2024;86(9):5292-5298. doi:10.1097/MS9.0000000000002322
149. Schmidl D, Bata AM, Szegedi S, et al. Influence of Perfluorohexyloctane Eye Drops on Tear Film Thickness in Patients with Mild to Moderate Dry Eye Disease: A Randomized Controlled Clinical Trial. Journal of Ocular Pharmacology and Therapeutics. 2020;36(3):154-161. doi:10.1089/jop.2019.0092
150. Protzko EE, Segal BA, Korenfeld MS, Krösser S, Vittitow JL. Long-Term Safety and Efficacy of Perfluorohexyloctane Ophthalmic Solution for the Treatment of Patients With Dry Eye Disease: The KALAHARI Study. Cornea. 2024;43(9):1100-1107. doi:10.1097/ico.0000000000003418
151. Eberwein P, Krösser S, Steven P. Semifluorinated Alkane Eye Drops in Chronic Ocular Graft-versus-Host Disease: A Prospective, Multicenter, Noninterventional Study. Ophthalmic Res. 2020;63(1):50-58. doi:10.1159/000499158
152. Vernhardsdottir RR, Magno MS, Hynnekleiv L, et al. Antibiotic treatment for dry eye disease related to meibomian gland dysfunction and blepharitis – A review. The Ocular Surface. 2022;26:211-221. doi:10.1016/j.jtos.2022.08.010
153. Wang H, Yin X, Li Y, et al. Safety and efficacy of intense pulsed light in the treatment of severe chronic ocular graft-versus-host disease. The Ocular Surface. 2023;30:276-285. doi:10.1016/j.jtos.2023.10.002
154. Song X, Chen Z, Li J, Wu S, Liang L. Therapeutic Efficacy and Safety of Intense Pulsed Light for Meibomian Gland Dysfunction in Patients with Chronic Ocular Graft-Versus-Host Disease. Ocular Immunology and Inflammation. 2024;32(8):1599-1608. doi:10.1080/09273948.2023.2266763
155. Mittal R, Patel S, Galor A. Alternative therapies for dry eye disease. Current Opinion in Ophthalmology. 2021;32(4):348-361. doi:10.1097/icu.0000000000000768
156. Johnson JR, Ali W, Wong BS, de Jesus M, Yee RW. Topical Spironolactone in the Treatment of Meibomian Gland Dysfunction. Investigative Ophthalmology & Visual Science. 2017;58(8):2249.