The Importance of a Continuously Changing Heart Rate in Venous and Arterial Pressure Analysis

Main Article Content

Gabriel P. Bonvillain, B.S. Lauren D. Pierce, M.D. Adria Abella Villafranca, B.S. Sam E. Stephens, M.S. Luke E. Ferguson Hanna K. Jensen, M.D., Ph.D. Joseph A. Sanford, M.D. Jingxian Wu, Ph.D. Kevin Sexton, M.D. Morten Jensen, Ph.D, Dr.Med.

Abstract

Purpose: Previous studies have suggested that minimally invasive peripheral venous and arterial pressure waveforms provide a greater ability to detect acute changes in blood volume than traditional vital signs. Many of these studies are using Fast Fourier Transforms and power spectral densities to evaluate changes in the power at the heart rate frequency. Using the frequency domain requires a segment of the time domain to be converted into the frequency domain, which means that the heart rate derived from frequency domain analysis is an average of the segment used. However, in clinical settings the heart rate is changing continuously.


Methods: This study evaluates the changing heart rate frequency power under varying time segments and compares the heart rate obtained from Fast Fourier Transform and power spectral density analysis with the instantaneous heart rate to gain a better insight into how a changing heart rate may influence the heart rate frequency power.


Results: Spectral analysis revealed non-linear trends in heart rate frequency power, with changes that correspond to changes in the heart rate. We found the time segment chosen and the absolute difference between the instantaneous heart rate and the average heart rate obtained from power spectral density analysis influences the heart rate frequency power, such that as the instantaneous heart rate approaches the average heart rate, the heart rate frequency power increases.


Conclusion: These results suggest that the time segment chosen for frequency domain analysis influences the power spectrum of the pressure waveforms. Furthermore, this study emphasizes the importance of utilizing a continuously changing heart rate in pressure waveform analysis.

Article Details

How to Cite
BONVILLAIN, Gabriel P. et al. The Importance of a Continuously Changing Heart Rate in Venous and Arterial Pressure Analysis. Medical Research Archives, [S.l.], v. 13, n. 8, aug. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6824>. Date accessed: 09 jan. 2026. doi: https://doi.org/10.18103/mra.v13i8.6824.
Section
Research Articles

References

1. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. Jun 2006;60(6 Suppl):S3-11. doi:10.1097/01.ta.0000199961.02677.19
2. Sambasivan CN, Schreiber MA. Emerging therapies in traumatic hemorrhage control. Curr Opin Crit Care. Dec 2009;15(6):560-8. doi:10.1097/MCC.0b013e328331f57c
3. Paladino L, Sinert R, Wallace D, Anderson T, Yadav K, Zehtabchi S. The utility of base deficit and arterial lactate in differentiating major from minor injury in trauma patients with normal vital signs. Resuscitation. Jun 2008;77(3):363-8. doi:10.1016/j.resuscitation.2008.01.022
4. Hick JL, Rodgerson JD, Heegaard WG, Sterner S. Vital signs fail to correlate with hemoperitoneum from ruptured ectopic pregnancy. Am J Emerg Med. Oct 2001;19(6):488-91. doi:10.1053/ajem.2001.27133
5. Nirmalan M, Dark PM. Broader applications of arterial pressure wave form analysis. Continuing Education in Anaesthesia Critical Care & Pain. 2014;14(6):285-290. doi:https://doi.org/10.1093/bjaceaccp/mkt078
6. Schmid KM, Lauria MJ, Braude DA, Crandall CS, Marinaro JL. Accuracy and Reliability of a Disposable Vascular Pressure Device for Arterial Pressure Monitoring in Critical Care Transport. Air Med J. 2020 Sep - Oct 2020;39(5):389-392. doi:10.1016/j.amj.2020.05.015
7. Dark P, Little R, Nirmalan M, Purdy J. Systemic arterial pressure wave reflections during acute hemorrhage. Crit Care Med. May 2006;34(5):1497-505. doi:10.1097/01.CCM.0000215451.26971.89
8. Wasicek PJ, Teeter WA, Yang S, et al. Arterial waveform morphomics during hemorrhagic shock. Eur J Trauma Emerg Surg. Apr 2021;47(2):325-332. doi:10.1007/s00068-019-01140-2
9. Sileshi B, Hocking KM, Boyer RB, et al. Peripheral venous waveform analysis for detecting early hemorrhage: a pilot study. Intensive Care Med. Jun 2015;41(6):1147-8. doi:10.1007/s00134-015-3787-0
10. Sperry BW, Campbell J, Yanavitski M, Kapadia S, Tang WHW, Hanna M. Peripheral Venous Pressure Measurements in Patients With Acute Decompensated Heart Failure (PVP-HF). Circ Heart Fail. Jul 2017;10(7) doi:10.1161/circheartfailure.117.004130
11. Jiménez RF, Torres P, Günther B, Morgado E, Jiménez CA. Wavelet and Fourier analysis of ventricular and main arteries pulsations in anesthetized dogs. Biol Res. 2004;37(3):431-47. doi:10.4067/s0716-97602004000300008
12. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. Apr 2008;108(4):735-48. doi:10.1097/ALN.0b013e3181672607
13. Chang D, Leisy PJ, Sobey JH, et al. Physiology and clinical utility of the peripheral venous waveform. JRSM Cardiovasc Dis. Jan-Dec 2020;9: 2048004020970038. doi:10.1177/2048004020970038
14. Mynard JP, Smolich JJ. One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann Biomed Eng. Jun 2015;43(6):1443-60. doi:10.1007/s10439-015-1313-8
15. Yoganathan AP, Gupta R, Corcoran WH. Fast Fourier transform in the analysis of biomedical data. Med Biol Eng. Mar 1976;14(2):239-45. doi:10.1007/BF02478755
16. Alvis BD, Polcz M, Miles M, et al. Non-invasive venous waveform analysis (NIVA) for volume assessment in patients undergoing hemodialysis: an observational study. BMC Nephrol. May 24 2020;21(1):194. doi:10.1186/s12882-020-01845-2
17. Bonasso PC, Sexton KW, Hayat MA, et al. Venous Physiology Predicts Dehydration in the Pediatric Population. J Surg Res. Jun 2019;238:232-239. doi:10.1016/j.jss.2019.01.036
18. Bonasso PC, Dassinger MS, McLaughlin B, Burford JM, Sexton KW. Fast Fourier Transformation of Peripheral Venous Pressure Changes More Than Vital Signs with Hemorrhage. Mil Med. 03 01 2019;184(Suppl 1):318-321. doi:10.1093/milmed/usy303
19. Al-Alawi AZ, Henry KR, Crimmins LD, et al. Anesthetics affect peripheral venous pressure waveforms and the cross-talk with arterial pressure. J Clin Monit Comput. Feb 2021;doi:10.1007/s10877-020-00632-6
20. Crimmins-Pierce LD, Bonvillain GP, Henry KR, et al. Critical Information from High Fidelity Arterial and Venous Pressure Waveforms During Anesthesia and Hemorrhage. Cardiovasc Eng Technol. Dec 2022;13(6):886-898. doi:10.1007/s13239-022-00624-4
21. Hayano J, Barros AK, Kamiya A, Ohte N, Yasuma F. Assessment of pulse rate variability by the method of pulse frequency demodulation. Biomed Eng Online. Nov 01 2005;4:62. doi:10.1186/1475-925X-4-62
22. Barajas MB, Riess ML, Hampton MJW, et al. Peripheral Intravenous Waveform Analysis Responsiveness to Subclinical Hemorrhage in a Rat Model. Anesth Analg. May 1 2023;136(5):941-948. doi:10.1213/ane.0000000000006349
23. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. Aug 1986;59(2):178-93. doi:10.1161/01.res.59.2.178