Use of AI and a non-invasively obtained estimate of the total blood pressure waveform for cardiovascular disorder screening

Main Article Content

David A. Hullender Olen R. Brown

Abstract

Accurate assessment of cardiovascular pathologies is essential for routine and specific patient diagnoses. Because heart disease is prevalent world-wide, an inexpensive, reliable, and non-invasive screening method that evaluates blood pressure, arterial stiffness, atrial fibrillation and other very specific pathologies in the cardiovascular system would improve diagnoses and potentially save many lives. We propose that technology is available for the diagnostic interpretation of patient data acquired from simple oscillometric blood pressure cuffs. Specifically, a model-based identification algorithm has been used successfully to estimate the coefficients in a Fourier series equation for the waveform while simultaneously estimating the coefficients in an empirical model for arterial stiffness. Thus, the continuous waveform with all its peaks and valleys including the dicrotic notch, can be displayed on an oscilloscope and/or plotted on a graph for visual examination. More importantly, the mathematical format for the waveform and arterial stiffness can be accessed by machine learning algorithms to diagnose and identify appropriate treatments. Research has revealed correlations of the waveform features and arterial properties with cardiovascular disorders. We propose the creation of a brachial artery database with cuff pressure time histories for specific cuff designs and patient medical histories. Machine learning algorithms can use this database to enhance the accuracy of diagnoses and treatments as well as be available for testing and validating more robust identification algorithms proposed in the future.

Keywords: arterial stiffness, artificial intelligence (AI), atrial fibrillation, machine learning (ML), blood pressure waveform, system identification, extended Kalman filter, oscillometric pulsations, arteriosclerosis, dicrotic notch

Article Details

How to Cite
HULLENDER, David A.; BROWN, Olen R.. Use of AI and a non-invasively obtained estimate of the total blood pressure waveform for cardiovascular disorder screening. Medical Research Archives, [S.l.], v. 13, n. 8, aug. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6849>. Date accessed: 06 dec. 2025. doi: https://doi.org/10.18103/mra.v13i8.6849.
Section
Research Articles

References

1. Di Cesare M, McGhie DV, Perel P, et al. The Heart of the World. Glob Heart. 2024;19(1). doi:10.5334/G H.1288,

2. Samartkit P, Pullteap S. Non-invasive continuous blood pressure sensors in biomedical engineering research: A review. Sens Actuators A Phys. 2024; 367:115084. doi:10.1016/J.SNA.2024.115084

3. Premakumara N, Cheng HT, Chen KW, Fu HN, Chen XY, Yang CY. Early Prevention of Cardiovascular Disease: A Review of Technology, Risk Scoring, and Non-Invasive Methods. 2024 9th International Conference on Information Technology Research (ICITR). Published online 2024. doi:10.1109/ICITR6 4794.2024.10857765

4. Hullender DA, Brown OR. Simulations of blood pressure and identification of atrial fibrillation and arterial stiffness using an extended Kalman filter with oscillometric pulsation measurements. Comput Methods Programs Biomed. 2021;198. doi:10.101 6/j.cmpb.2020.105768

5. Hullender D, Brown O, Shrotriya A. Non-Invasive Blood Pressure Total Waveform Monitoring Using Information Extracted by an Extended Kalman Filter Algorithm from Pulsations in an Oscillatory Cuff. Med Res Arch. 2023;11(3). doi:10.18103/MRA.V11I 3.3677

6. Sharman JE, Tan I, Stergiou GS, et al. Automated ‘oscillometric’ blood pressure measuring devices: how they work and what they measure. J Hum Hypertens. 2022;37(2):93. doi:10.1038/S41371-022-00693-X

7. Ntineri A, Theodosiadi A, Menti A, et al. A novel professional automated auscultatory blood pressure monitor with visual display of Korotkoff sounds: InBody BPBIO480KV validation according to the Association for the Advancement of Medical Instrumentation/European Society of Hypertension/ International Organization for Standardization Universal Standard. J Hypertens. 2023;41(2):356-361. doi:10.1097/HJH.0000000000003341

8. Tangirala AK. Principles of System Identification. 1st ed. CRC Press; 2018. doi:10.1201/9781315222 509

9. Chen B, Dang L, Zheng N, Principe J. Kalman Filtering Under Information Theoretic Criteria. Springer; 2023. doi:10.1007/978-3-031-33764-2

10. Lewis FL, Optimal estimation : with an introduction to stochastic control theory, ISBN 0-471-83741-5, Wiley-Interscience,1986

11. Yartsev A. Normal arterial line waveforms | Deranged Physiology. August 12, 2023. Accessed June 30, 2025.
https://derangedphysiology.com/main/cicm-primary-exam/cardiovascular-system/Chapter-760/normal-arterial-line-waveforms

12. CICM Primary Exam Syllabus review | Deranged Physiology. Accessed July 8, 2025.
https://derangedphysiology.com/main/cicm-primary-exam-4

13. Hullender DA. Alternative Approach for Modeling Transients in Smooth Pipe with Low Turbulent Flow. Journal of Fluids Engineering, Transactions of the ASME. 2016;138(12). doi:10.1115/1.4034097/374392

14. Hullender DA. Analytical Non-Newtonian Oldroyd-B Transient Model for Pretransient Turbulent Flow in Smooth Circular Lines. Journal of Fluids Engineering, Transactions of the ASME. 2019;141(2). doi:10.1115/1.4040933/457360

15. Esper SA, Pinsky MR. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol. 2014;28(4):363-380. doi:10.1016/j.bpa.2014.08.002

16. Stouffer GA, Arterial pressure | Thoracic Key. https://thoracickey.com/4-arterial-pressure/?utm_source=chatgpt.com

17. Alastruey J, Charlton PH, Bikia V, et al. Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet. Am J Physiol Heart Circ Physiol. 2023;325(1):H1. doi:10.1152/AJ PHEART.00705.2022

18. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation. 1980;62(1):105-116. doi:10.1161/01.CIR.62.1.105

19. Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg J V. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol. 2003;284(4 53-4). doi:10.1152/AJPHEART.00175.2002

20. Gamrah MA, Xu J, El Sawy A, Aguib H, Yacoub M, Parker KH. Mechanics of the dicrotic notch: An acceleration hypothesis. Proc Inst Mech Eng H. 2020; 234(11):1253-1259. doi:10.1177/0954411920921628

21. Pulsus parvus et tardus: What Is It, Causes, and More | Osmosis. Accessed July 11, 2025.
https://www.osmosis.org/answers/pulsus-parvus-et-tardus?utm_source=chatgpt.com

22. Goudar RB, ElBebawy B. Pulsus Bisferiens. Br Med J. 2023;1(1985):75-77. doi:10.1136/bmj.1.19 85.75

23. Milkovich N, Mitchell GF, Suki B, Zhang Y. Blood pressure waveform morphology assessed using a transmission line model and harmonic distortion analysis. Sci Rep. 2025;15(1):1-13. doi:10.1038/S41598-025-93129-8;SUBJMETA=166,639,985,988;KWRD= BIOMEDICAL+ENGINEERING,MECHANICAL+ENGINEERING

24. Li B, Hullender D, DiRenzo M. Nonlinear induced disturbance rejection in inertial stabilization systems. IEEE Transactions on Control Systems Technology. 1998;6(3):421-427. doi:10.1109/87.668042

25. Li B, Hullender D. Self-tuning controller for nonlinear inertial stabilization systems. IEEE Transactions on Control Systems Technology. 1998; 6(3):428-434. doi:10.1109/87.668043

26. Li B, Hullender D. Self-tuning controller for nonlinear inertial stabilization systems. IEEE Transactions on Control Systems Technology. 1998; 6(3):428-434. doi:10.1109/87.668043