Beyond Rapamycin: Metadichol Represents a New Class of Multi-Target mTOR Modulators
Main Article Content
Abstract
Aim: The mechanistic target of rapamycin (mTOR) signaling pathway represents a critical regulatory hub controlling cellular growth, metabolism, and survival, with its dysregulation implicated in numerous pathological conditions, including cancer, metabolic disorders, and aging. While conventional mTOR inhibitors such as rapamycin and its analogs have shown therapeutic promise, their clinical efficacy is often limited by incomplete pathway inhibition, feedback activation of compensatory pathways, and significant side effects. This study aimed to investigate the multi-target modulatory effects of metadichol, a nanoemulsion of long-chain alcohols, on the mTOR signaling network and its downstream effectors, with particular focus on DNA damage inducible transcript 4 (DDIT4) and ribosomal protein S6 kinase B1 (p70S6K) regulation across diverse cellular contexts.
Scope: The scope of this investigation encompassed comprehensive molecular analysis of metadichol's effects on key components of the mTOR signaling cascade in both immune cells (peripheral blood mononuclear cells, PBMCs) and multiple cancer cell lines representing different tissue origins (U87 glioblastoma, A549 lung adenocarcinoma, MDA-MB-231 breast cancer, HCT116 colorectal cancer, and HepG2 hepatocellular carcinoma).
The study employed quantitative real-time polymerase chain reaction (qRT-PCR) analysis to evaluate gene expression changes and Western blot techniques to assess protein-level modifications. Concentration-response relationships were established across a range from 1 pg/mL to 100 ng/mL to determine the minimal effective dose and characterize dose-dependent effects.
Methods: Primary human PBMCs were isolated using density gradient centrifugation and treated with various concentrations of metadichol for 24 hours. Cancer cell lines were cultured under standard conditions and subjected to identical treatment protocols. RNA extraction was performed using TRIzol methodology, followed by cDNA synthesis and qRT-PCR analysis using specific primers for mTOR, DDIT4, and p70S6K genes. Protein expression analysis was conducted using Western blot techniques with specific antibodies. Gene expression changes were calculated using the ΔΔCt method with β-actin as the housekeeping gene reference.
Key Findings: Metadichol demonstrated remarkable potency in modulating mTOR signaling components at concentrations as low as 1 pg/mL, representing activity levels several orders of magnitude lower than conventional mTOR inhibitors. The compound consistently upregulated DDIT4 expression across all tested cell types, with concurrent downregulation of both mTOR and p70S6K expression. In PBMCs, metadichol induced significant DDIT4 upregulation while suppressing mTOR expression, with p70S6K showing delayed dose-dependent inhibition at higher concentrations (100 ng/mL). Cancer cell lines exhibited robust responses with DDIT4 upregulation accompanied by substantial downregulation of both mTOR and p70S6K across multiple concentrations. Notably, the hepatocellular carcinoma cell line HepG2 showed resistance to p70S6K inhibition despite effective mTOR suppression, suggesting cell-type-specific response patterns and potential alternative pathway activation. involvement of high-affinity receptor- mediated mechanisms or amplification through secondary messenger systems.
Conclusions: Metadichol represents a paradigm shift in mTOR pathway modulation, demonstrating unprecedented potency and multi-target activity that distinguishes it from conventional rapamycin-based inhibitors. The compound's ability to coordinately regulate DDIT4, mTOR, and p70S6K at picomolar concentrations suggests novel mechanisms of action that warrant further investigation. The unique pharmacological profile of metadichol may herald the development of next-generation mTOR modulators with enhanced efficacy and improved safety characteristics for treating cancer, metabolic disorders, and age-related diseases.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183-203. doi:10.1038/s41580-019-0 199-y
3. Xie J, Wang X, Proud CG. mTOR inhibitors in cancer therapy. F1000Res. 2016;5:2078. doi:10.12688/f1000research.9207.1
4. Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf. 2015;14(7):1055-1070. doi:10.1517/14740338.2015.1046832
5. Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med. 2023;55(9):1933-1944. doi:10. 1038/s12276-023-01056-3
6. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893-2904. doi:10.1101/gad. 1256804
7. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589-3594. doi:10.1242/jcs.051011
8. Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth. J Biol Chem. 2001; 276(13):9583-9586. doi:10.1074/jbc.R000034200
9. Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem. 2003; 278(35):32493-32496. doi:10.1074/jbc.C300226200
10. Zhou H, Huang S. The complexes of mammalian target of rapamycin. Curr Protein Pept Sci. 2010;11( 6):409-424. doi:10.2174/138920310791824093
11. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125(1):25 -32. doi:10.1172/JCI73939
12. Yong J, Kim H, Lee E, Jung Y. Regulation of transcriptome plasticity by mTOR signaling pathway. Exp Mol Med. 2025;57(1):1-15. doi:10.1038/ s12276-025-01508-y
13. Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721 -726. doi:10.7164/antibiotics.28.721
14. Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975;28(10):727-732. doi:10.7164/antibiotics.28.727
15. Kahan BD, Gibbons S, Tejpal N, Stepkowski SM, Chou TC. Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation. 1991;51(1):232-239. doi:10.1097/00007890-199101000-00041
16. Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol. 1990;144(1):251-258.
17. Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756-758. doi:10.1038/369756a0
18. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35-43. doi:10.1016/0092-8674(94)90570-3
19. Keith CT, Schreiber SL. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science. 1995;270(5233):50-51. doi:10.1126/scien ce.270.5233.50
20. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905-909. doi:10.1126/ science.1715094
21. Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457-468. doi:10.1016/s1097-2765(0 2)00636-6
22. Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14): 1296-1302. doi:10.1016/j.cub.2004.06.054
23. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110 (2):163-175. doi:10.1016/s0092-8674 (02)00808 -5
24. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177-189. doi:10.1016/s0092-8674(02)00833-4
25. Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023-8032. doi:10.1074/jbc.M900301200
26. Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036-20044. doi:10.1074/jbc.M702376200
27. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584(7): 1287-1295. doi:10.1016/j.febslet.2010.01.017
28. Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981-1991. doi:10.1091/mb c.e08-12-1248
29. Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):11 22-1128. doi:10.1038/ncb1183
30. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712): 1098-1101. doi:10.1126/science.1106148
31. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159-168. doi:10.10 16/j.molcel.2006.03.029
32. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261-1274. doi:10.1016/j.cell.2007.06.009
33. Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor or rictor reveals differential sensitivity to rapamycin. Mol Cell. 2006;21(4):543-551. doi:10.1016/j.molcel.2006.0 1.028
34. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2012;441(1): 1-21. doi:10.1042/BJ20110892
35. Bahrami-B F, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 Ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol. 2014;67(12): 1019-1025. doi:10.1136/jclinpath-2014-202560
36. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569-580. doi:10.1016/j.cell.200 5.10.024
37. Babchia N, Calipel A, Mouriaux F, Faussat AM, Mascarelli F. The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-Raf/ERK. Invest Ophthalmol Vis Sci. 2010;51(1):421-429. doi:10.1167/iovs.09-3974
38. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998;95(4):1432-1437. doi:10.1073/pnas.95.4.1432
39. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP12 specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69(7):1227-1236. doi:10.1016/ 0092-8674(92)90643-q
40. Tavares MR, Pavan IC, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. 2015;131:1-10. doi:10. 1016/j.lfs.2015.03.001
41. Ben-Hur V, Denichenko P, Siegfried Z, et al. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep. 2013;3(1):103-115. doi:10.1016/j.celrep.2012.11.020
42. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007;25(4):209-226. doi:10.1080/08977 190701779101
43. Ruvinsky I, Sharon N, Lerer T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005;19(18):2199-2211. doi:10.1101/gad.351605
44. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci. 2006;31(6):342-348. doi:10. 1016/j.tibs.2006.04.003
45. Meyuhas O. Ribosomal protein S6 phosphorylation: four decades of research. Int Rev Cell Mol Biol. 2015;320:41-73. doi:10.1016/bs.ircmb.2015.07.0 06
46. Fenton TR, Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol. 2011;43(1):47-59. doi:10.1016/j.biocel.2010.09.018
47. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200-205. doi:10.1038/nature02866
48. Goberdhan DC, Wilson C, Harris AL. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 2016;23(4):580-589. doi:10.1 016/j.cmet.2016.03.013
49. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960-976. doi:10.1016/j.cell.2017.02.004
50. Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15(6):555-564. doi:10. 1038/ncb2763
51. Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43-48. doi:10.1126/scien ce.aab2674
52. Chantranupong L, Wolfson RL, Orozco JM, et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014;9(1):1-8. doi:10.1016/j. celrep.2014.09.014
53. Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):149 6-1501. doi:10.1126/science.1157535
54. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141 (2):290-303. doi:10.1016/j.cell.2010.02.024
55. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226. doi:10. -1016/j.molcel.2008.03.003
56. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577-590. doi:10.1016/s0092-8674(03)00929-2
57. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeo-stasis. Nat Rev Mol Cell Biol. 2012;13(4):251-262. doi:10.1038/nrm3311
58. Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329-3335. doi:10.1073/pnas.030 8061100
59. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255-272. doi:10.1038/s41580-022-00547-x
60. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121-135. doi:10.1038/nrm.2017.95
61. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016-1023. doi:10.1038/ncb2329
62. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789-800. doi:10.101 6/j.molcel.2017.05.032
63. Oakhill JS, Steel R, Chen ZP, et al. AMPK is a direct adenylate charge-regulated protein kinase. Science. 2011;332(6036):1433-1435. doi:10.1126/science .1200094
64. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648-657. doi:10.1038/ncb839
65. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151-162. doi:10.1016/s1097-2765(02)00568-3
66. Ellisen LW, Ramsayer KD, Johannessen CM, et al.REDD1, a developmentally regulated transcript tional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10(5): 995-1005. doi:10.1016/s1097-2765(02)00706-2
67. Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22(7):2283-2293. doi:10.1128/mcb.22.7.2283-2293.2002
68. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem. 2003;278(26):23861-23867. doi:10.1074/j bc.M301843200
69. Sofer A, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol. 2005;25(14): 5834-5845. doi:10.1128/MCB.25.14.5834-5845. 2005
70. Jin HO, Hong SE, Kim JY, et al. Sustained overexpression of HIF-1α leads to the resistance to anticancer drugs through autophagy induction. Oncol Rep. 2011;25(1):237-243. doi:10.3892/or_00001 069
71. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22(2):239-251. doi:10.1 101/gad.1617608
72. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004;18(13):1533-1538. doi:10.1101/ gad.1199104
73. Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 2005;19(15):1773-1778. doi:10.1101/ gad.1314605
74. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13(15):1259-1268. doi:10.1016/ s0960-9822(03)00506-2
75. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5(6): 578-581. doi:10.1038/ncb999
76. Brugarolas J, Kaelin WG Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell. 2004;6(1):7-10. doi:10.1016/j.ccr.2004.06.020
77. Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010;40(4):509-520. doi:10.1016/j.molcel.20 10.10.030
78. Horak P, Crawford AR, Vadysirisack DD, et al. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(10):4675-4680. doi:10.1073/pnas.0907705107
79. Vadysirisack DD, Baenke F, Ory B, Lei K, Ellisen LW. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol. 2011;31(21):4356-4365. doi:10.1128/MCB.05541-11
80. Schwarzer R, Tondera D, Arnold W, Giese K, Klippel A, Kaufmann J. REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinosi¬tol 3-kinase. Oncogene. 2005;24(7):1138-1148. doi:10.1038/sj.onc.1208236
81. Lipina C, Hundal HS. Modulation of cellular redox homeostasis by the endoplasmic reticulum stress re-sponse in skeletal muscle: implications for insulin re-sistance. Biochem Soc Trans. 2016;44(2):362-369. doi:10.1042/BST20150273
82. Yoshida T, Mett I, Bhunia AK, et al. Rtp801, a sup-pressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema. Nat Med. 2010;16(7):767-773. doi: 10.1038/nm.2157
83. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18(20):5546-5553. doi:10.1158/1078-043 2.CCR-12-0977
84. Cam H, Easton JB, High A, Houghton PJ. mTORC1 sig¬naling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010;40(4):509-520. doi: 10.1016/j.molcel.2010. 10.030
85. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9-22. doi:10.101 6/j.ccr.2007.05.008
86. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-1945. doi:10. 1101/gad.1212704
87. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606-619. doi:10.1038/nrg1879
88. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(4 1):5497-5510. doi:10.1038/onc.2008.245
89. Chalhoub N, Baker SJ. PTEN and the PI3-kinase path¬way in cancer. Annu Rev Pathol. 2009;4:127-150. doi:10.1146/annurev.pathol.4.110807.092311
90. Keniry M, Parsons R. The role of PTEN signaling per-turbations in cancer and in targeted therapy. Onco-gene. 2008;27(41):5477-5485. doi:10.1038/onc. 2008.248
91. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Ki¬nase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489-501. doi:10.1038/nrc839
92. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29-86. doi:10.1016/S0065-230X(05)94002-5
93. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Ex-ploiting the PI3K/AKT pathway for cancer drug dis-covery. Nat Rev Drug Discov. 2005;4(12):988-1004. doi:10.1038/nrd1902
94. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
95. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11-20. doi:10.1016/j.cmet.2007.10.002
96. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35. doi:10.10 38/nrm3025
97. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7(4):209-219. doi: 10.1038/nrclinonc.2010.21
98. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278-2287. doi:10.1200/ JCO.2008.20.0766
99. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell car¬cinoma. N Engl J Med. 2007;356(22):2271-2281. doi:10.1056/NEJMoa066838
100. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a dou¬ble-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449-456. doi:10. b1016/S0140-6736(08)61039-9
101. Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science. 1996;273(5 272):239-242. doi:10.1126/science.273.5272.239
102. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500-1508. doi:10.1158/0008-5472.CAN-05-2925
103. Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibi-tion of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065-3074. doi:1 0.1172/JCI34739
104. Feldman ME, Apsel B, Uotila A, et al. Active-site in-hibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7(2):e38. doi:10.1371/journal.pbio.1000038
105. Thoreen CC, Sabatini DM. Rapamycin inhibits mTORC1, but not completely. Autophagy. 2009;5(5): 725-726. doi:10.4161/auto.5.5.8504
106. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011;1(3):248-259. doi:10.1158/ 2159-8290.CD-11-0085
107. Iyer G, Hanrahan AJ, Milowsky MI, et al. Genome sequencing identifies a basis for everolimus sensitiv-ity. Science. 2012;338(6104):221. doi:10.1126/sci¬ence.1226344
108. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive ad-vanced breast cancer. N Engl J Med. 2012;366(6): 520-529. doi:10.1056/NEJMoa1109653
109. Yao JC, Shah MH, Ito T, et al. Everolimus for ad-vanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514-523. doi:10.1056/NEJMoa 1009290
110. Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70(1):288-298. doi:10.1158/000 8-5472.CAN-09-1751
111. Maira SM, Stauffer F, Brueggen J, et al. Identifica-tion and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-ki-nase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851-1863. doi:10.1158/1535-7163. MCT-08-0017
112. Raghavan PR. Policosanol Nanoparticles US Patent 8,722,0093 (2014).
113. P R. Raghavan. Metadichol® A Nano Lipid Emulsion that Expresses All 49 Nuclear Receptors in Stem and Somatic Cells. Archives of Clinical and Biomedical Research. 7 (2023): 543-555.DOI: 10.26502/acbr.50170370
114. Raghavan, P. R,. Metadichol® induced expression of TLR family members in peripheral blood mononu-clear cells. Medical Research Archives, S.l., v. 12, n. 9, sep. 2024. ISSN 2375-1924. Available at: https://esmed.org/MRA/mra/article/view/5610
115. Raghavan PR. Inhibition of Dengue and other envel-oped viruses by Metadichol®, a novel Nano emulsion Lipid. J Sci Heal Outcomes. 2016;4(1):1-8.
116. Raghavan PR. In vitro inhibition of zika virus by Metadichol®, a novel nano emulsion lipid. J Immunol Tech Infect Dis. 2016;5(2):1-6.
117. Raghavan PR. Metadichol® and vitamin C increase in vivo, an open-label study. Vitam Miner. 2018;7(2): 1-5.
118. Raghavan PR. VDR Inverse Agonism by Metadichol Enhances VDBP-Mediated Immunity. Preprints.org. 2025. doi:10.20944/preprints202506.0491.v1
119. Raghavan PR. Metadichol® A Novel Nano Lipid; GPR 120 Agonist. Int J Diabetes Complications. 2017; 1(1):1-6.
120. Raghavan PR. Metadichol: a novel nanolipid formu-lation that inhibits SARS-CoV-2 and a multitude of pathological viruses in vitro. Biomed Res Int. 2022;20 22:1558860. doi:10.1155/2022/1558860
121. Raghavan PR. Metadichol: An Agonist that Expresses the Anti-aging Gene Klotho in Various Cell Lines. For¬tune Journal of Health Sciences. 2023;6:357-362. doi:10.26502/jbsb.5107066
122. Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046-R1052. doi:10.1016/j.cub.2009.09.058
123. Düvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171-183. doi:10.1016/j.molcel.2010.06.022
124. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stim¬ulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339(6125):1323-1328. doi:10.1126/science .1228792
125. Robitaille AM, Christen S, Shimobayashi M, et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science. 2013;339(6125):1320-1323. doi:10.1126/science. 1228771
126. Foltyn M, Luger AL, Lorenz NI, et al. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer. 2019;120 (5):481-487. doi:10.1038/s41416-018-0368-3
127. Wang H, Wang J, Qu H, et al. In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/ TSC2/mTOR pathway. Endocrine. 2016;54(2):348-3 59. doi:10.1007/s12020-016-0999-1
128. Araki K, Turner AP, Shaffer VO, et al. mTOR regu-lates memory CD8 T-cell differentiation. Nature. 2009;460(7251):108-112. doi:10.1038/nature08 155
129. Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR ki-nase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30 (6):832-844. doi:10.1016/j.immuni.2009.04.014
130. Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Reg¬ulation of immune responses by mTOR. Annu Rev Im¬munol. 2012;30:39-68. doi:10.1146/annurev-im-munol-020711-075024
131. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12(5):3 25-338. doi:10.1038/nri3198
132. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Bio-chem J. 2008;412(2):179-190. doi:10.1042/BJ20080281
133. Raghavan PR. Metadichol-Induced KLF Expression in PBMC Cells. Links SIRTs, NRs, TLRs, and circadian genes. A Systems-Wide Biology Approach. Preprints. 2025;2025020271. doi:10.20944/preprints2025 02.0271.v1
134. Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem. 2010;10(7):571-581. doi:10.2174/187152010793498663
135. Dancey JE. Therapeutic targets: MTOR and related pathways. Cancer Biol Ther. 2006;5(9):1065-1073. doi:10.4161/cbt.5.9.3175
136. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-293. doi:10.1016/j.cell.2012.03.017
137. De Fijter JW. Cancer and mTOR Inhibitors in Trans-plant Recipients. Transplantation. 2017;101(1):45-55. doi:10.1097/TP.0000000000001447
138. Aleman C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87.
139. Aleman CL, et al. Carcinogenicity of policosanol in Sprague Dawley rats: a 24 month study. Teratog Carcinog Mutagen. 1994;14(5):239-249.
140. Aleman CL, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995; 33(7):573-578.
141. Lo Surdo P, Iannuccelli M, Contino S, Castagnoli L, Li¬cata L, Cesareni G, Perfetto L. SIGNOR 3.0, the SIG¬naling network open resource 3.0: 2022 update. Nu¬cleic Acids Res. 2022;gkac883. doi:10.1093/nar/ gkac883
142. Chalkiadaki A, Guarente L. The multifaceted func-tions of sirtuins in metabolism. Nat Rev Mol Cell Biol. 2015;13(12):698-707. doi:10.1038/nrm3478
143. Ruderman NB, et al. AMPK and SIRT1: A long-stand¬ing partnership? Am J Physiol Endocrinol Metab. 2010;298(5):E751-E760. doi:10.1152/ajpendo.00 745.2009
144. Raghavan PR. Metadichol®-Induced Expression of Sirtuin 1-7 In Somatic and Cancer Cells. Med Res Arch. 2024;12(6):5328. doi:10.18103/mra.v12i6. 5328
145. Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 mod¬ulation of the acetylation status, cytosolic localiza¬tion, and activity of LKB1. J Biol Chem. 2008; 283 (4 1):27628-27635. doi:10.1074/jbc.M805711200
146. Chalkiadaki A, Guarente L. The multifaceted func-tions of sirtuins in metabolism. Nat Rev Mol Cell Biol. 2015;13(12):698-707. doi:10.1038/nrm3478
147. Ruderman NB, et al. AMPK and SIRT1: A long-stand¬ing partnership? Am J Physiol Endocrinol Metab. 2010;298(5):E751-E760. doi:10.1152/ajpendo.00 745.2009
148. Sun C, Zhang F, Ge X, et al. The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis. eLife. 2021;10:e70672. doi:10.7554/eLife.70672
149. Haigis MC, Sinclair DA. Mammalian sirtuins: biologi-cal insights and disease relevance. Annual Review of Pathology: Mechanisms of Disease. 2010;5:253-295. doi:10.1146/annurev.pathol.4.110807.092250
150. Li Y, Wang WJ, Cao H, et al. SIRT1 Induces Autoph¬agy by Activating AMPK in Cardiomyocytes Under Prolonged Hypoxia. Front Bioeng Biotechnol. 2020;8 :568861. doi:10.3389/fendo.2020.568861
151. Xu P, Das M, Reilly J, et al. The Current State of Re-search on Sirtuin-Mediated Autophagy in Cardiovas¬cular Disease. J Cardiovasc Transl Res. 2023;16(5):8 13-825. doi:10.1007/s12265-023-10152-1
152. O’Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors — redefining innate immunity. Nat Rev Immunol. 2013;13(6):453-460.
153. Weichhart T, Säemann MD. The multiple facets of mTOR in immunity. Trends Immunol. 2009;30(5):218-226.
154. Patil S, Patil V. Metadichol as a novel modulator of toll-like receptors: Downregulation of TLRs and allied signaling pathways in cancer cell lines. J Cancer Res Ther. 2020;16(3):604-610.
155. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226.
156. Yang H, Zhang W, Pan H, et al. SIRT1 activators sup¬press inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS One. 2012;7(9):e46364. doi:10.1371/jour¬nal.pone.0046364
157. Ahmad S, Khan H, Shahab M, et al. Crosstalk of im-munity and metabolism: interaction of toll-like recep¬tors (TLRs) and gut microbiota. Acta Diabetol. 2025;62(6):841-851. doi:10.1007/s00592-02522 88-z
158. Inohara N, Nuñez G. Molecular mechanism of cross-talk between immune and metabolic systems in met-abolic syndrome. J Gastroenterol. 2022;57(5):313-322. doi:10.1007/s00535-022-01864-6
159. Lee JW, Park S, Takahashi Y, Wang H-G. The Asso-ciation of AMPK with ULK1 Regulates Autophagy. PLoS ONE. 2010;5(11):e15394. doi:10.1371/jour-nal.pone.0015394
160. Mihaylova MM, Shaw RJ. The AMPK signaling path-way coordinates cell growth, autophagy, & metabo¬lism. Nature Cell Biology. 2011;13(9):1016-1023. doi:10.1038/ncb2329
161. Raghavan PR. Metadichol-induced expression of cir¬cadian clock transcription factors in human fibro-blasts. Med Res Arch. 2024;12(6). doi:10.18103/ mra.v12i6.5371
162. Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamy¬cin, clock genes, circular noncoding ribonucleic acids, and Rho/Rock. Neural Regen Res. 2019;14(5):773-774. doi:10.4103/1673-5374.249224
163. Maiese K. Cognitive impairment with diabetes melli-tus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol. 2020;13 (1):23-34. doi:10.1080/17512433.2020.1698288
164. Matsumoto CS, et al. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. On¬cotarget. 2016;7(27):42393-42407. doi:10.1863 2/ oncotarget.9877
165. Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin mTOR sig¬naling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry. 2022;12(1): 355. doi:10.1038/s41398-022-02120-8
166. Ramanathan C, Xu H, Khan SK, et al. mTOR signaling regulates central and peripheral circadian clock function. Cell Rep. 2018;25(1):120-132.
167. Khapre RV, Kondratova AA, Susova O, Kondratov RV. Circadian clock and mTOR signaling in the control of metabolism and aging. Aging (Albany NY). 2014;6(1):48-57.
168. Eckel-Mahan KL, Patel VR, de Mateo S, et al. Repro¬gramming of the circadian clock by nutritional chal¬lenge. Cell Metab. 2013;17(5):801-809.
169. Gonzalez-Pardo V, et al. VDR agonists down regu-late PI3K/Akt/mTOR axis and trigger autophagy in endothelial cells expressing vGPCR by a VDR-de-pendent mechanism. Biochem Biophys Res Commun. 2019;516(2):486-492. doi:10.1016/j.bbrc.2019.06.089
170. Yang Y, et al. Unraveling DDIT4 in the VDR-mTOR pathway: a novel target for diabetic kidney disease. Front Endocrinol (Lausanne). 2024;15:11153746. Do i:10.3389/fendo.2024.11153746.02
171. Yang N, et al. 1,25-Dihydroxyvitamin D3 inhibits the proliferation of rat mesangial cells by upregulating DDIT4 to suppress mTOR signaling. J Steroid Biochem Mol Biol. 2015;148:116-124.
172. Abasheva D, et al. Unraveling DDIT4 in the VDR-mTOR pathway: a novel target for diabetic kidney disease. Front Pharmacol. 2024;15:1344113.
173. Syed T, et al. Vitamin D in tuberous sclerosis com-plex-associated tumors: novel gemini-vitamin D3 an¬alog inhibits tumor cell growth and modulates the Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol. 2006;100:107-116.
174. Gao J, et al. SIRT1 negatively regulates the mamma¬lian target of rapamycin. PLoS One. 2010;5(2):e9199.
175. Shi Y, et al. The role of SIRT1 in autophagy and drug resistance. Front Oncol. 2024;14:11471651.
176. Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4(4):439-452. doi:10. 3945/an.113.003798
177. Guo Y, Shi N, Lu D, et al. Mechanistic insights into the peroxisome proliferator-activated receptors in in¬flammation and metabolism. Front Med (Lausanne). 2022;9:1060244.
178. Sudhakar M, Silambanan S, Arumugam V, et al. PPARα: An emerging target of metabolic syn-drome. Int J Mol Sci. 2022;23(24):15944.
179. Sarkar S, Gherghiceanu M, Xiang S, et al. Moving to the Rhythm with Clock (Circadian) Genes, Autoph¬agy, and Cardioprotection. Int J Mol Sci. 2017;18(6) :1378.
180. Bellet MM, Orozco-Solis R, Sahar S, et al. SIRT1 reg¬ulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317-328.
181. Ramanathan C, Kathale ND, Liu D, et al. mTOR sig-naling regulates central and peripheral circadian clock function. PLoS Genet. 2018;14(5):e1007369.
182. Cela O, Scrima R, Aquilino M, et al. NAMPT-mediated NAD+ biosynthesis regulates circadian clock oscillations through SIRT1 activity. J Biol Chem. 2016;291(7):3396-3409.
183. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960-976. doi:10.1016/j.cell.2017.02.004
184. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40(2):310-322. doi:10.1016/j.molcel.2010.09.026
185. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019;21(1): 63-71. doi:10.1038/s41556-018-0209-9
186. Yu Y, et al. Tailoring mTOR-based therapy: molecu-lar evidence and clinical application. J Hematol On-col. 2013;6:18. doi:10.1186/1756-8722-6-18
187. Guo JY, White E. Autophagy, Metabolism, and Can¬cer. Cold Spring Harb Symp Quant Biol. 2016;81:73-78. doi:10.1101/sqb.2016.81.030858
188. Poillet-Perez L, White E. Role of tumor and host au-tophagy in cancer metabolism. Genes Dev. 2019;33 (11-12):610-619. doi:10.1101/gad.3251 42.119
189. Yamamoto K, et al. Autophagy promotes immune evasion of pancreatic cancer. EMBO J. 2020;39(13): e105432. doi:10.15252/embj.2021110031
190. Law B, et al. Global research and emerging trends in autophagy in lung cancer. Front Oncol. 2024;14:1 213457. doi:10.3389/fonc.2024.1213457
191. Nazio F, et al. mTOR, autophagy, and cancer: from molecular mechanisms to targeted therapies. Cell Mol Life Sci. 2019;76(13):2579-2590. doi:10.1007/ s00018-019-03147-1
192. Li Y, et al. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical ap-plication. Front Oncol. 2015;5:230. doi:10.3389/ fonc.2015.00230
193. Lee J, et al. Targeted therapy of cancer stem cells: inhibition of mTOR pathway. Int J Mol Sci. 2024; 25(12):6489. doi:10.3390/ijms25126489
194. Sunayama J, et al. Cross-talk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity in glioblastoma stem-like cells. Cancer Res. 2010;70(1 1):4617-4626. doi:10.1158/0008-5472.CAN-09-4562
195. Chang L, et al. mTOR regulation of stemness in can-cer. Cancer Lett. 2017;386:133-142. doi:10.1016/ j.canlet.2016.11.042
196. Corominas-Faja B, et al. Stem cell engineering and the PI3K/mTOR pathway: insights for cancer ther-apy. Front Oncol. 2013;3:208. doi:10.3389/fonc. 2013.00208
197. Wang Y, et al. Constitutive activation of p70 S6 ki-nase is associated with intrinsic resistance to cisplatin in human small cell lung cancer H69 cells. Int J Oncol. 2008;32(1):113-121. doi:10.3892/ijo.32.1.113
198. Zhu H, et al. The role of mTORC1 pathway and au-tophagy in resistance to cisplatin in cancer. Front On¬col. 2023;13:1181912. doi:10.3389/fonc.2023.11 81912
199. Li L, et al. Paclitaxel induces inactivation of p70 S6 kinase and apoptosis in breast cancer cells. Cancer Res. 2003;63(3):621-627.
200. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes, and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35. doi:10. 1038/nrm3025
201. Niu Y, et al. PD-L1 promotes tumor growth and pro-gression by activating WIP and mTOR signaling. Cell Death Dis. 2020;11(7):511. doi:10.1038/s41419-020-2701-z
202. Ji J, et al. Enhanced bypass of PD-L1 translation re-duces the therapeutic efficacy of mTOR inhibitors. Cell Reports. 2023;44(7):111167. doi:10.1016/j.cel rep.2023.111167
203. Dai S, et al. mTOR inhibition has a direct effect on the modulation of PD-L1 expression in cancer cells. Cancer Immunol Res. 2020;8(9):1085-1098. doi:10. 1158/2326-6066.CIR-19-0873
204. Cobbold SP. The mTOR pathway and integrating im¬mune regulation. Immunology. 2013;140(4):391-398. doi:10.1111/imm.12162
205. Pollizzi KN, Powell JD. Regulation of immune re-sponses by mTOR. Immunity. 2015;43(3):503-513. doi:10.1016/j.immuni.2015.08.021
206. Jones RG, Pearce EL. mTOR signaling in immune cells: diversity and innovation. Immunity. 2017;47(5):729-743. doi:10.1016/j.immuni.2017.10.026
207. Rao RR, et al. mTOR regulates memory formation in peripheral blood mononuclear cells. J Immunol. 2010;185(2):746-755. doi:10.4049/jim¬munol.090 3670
208. Lazorchak AS, et al. mTORC2 regulates B cell devel¬opment and function. J Immunol. 2012;188(4):1905-1912. doi:10.4049/jimmunol.1102325
209. Raghavan S, et al. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the molecular clock in cancer. Cell Rep. 2016;16(12):2676-2686. doi:10. 1016/j.celrep.2016.07.024
210. Miranda E, et al. PTEN deficiency mediates a recip-rocal response to IGF-1 and mTOR inhibition in Ewing sarcoma. Oncotarget. 2014;5(12):6043-6058. doi:1 0.18632/oncotarget.2056
211. Kotecha N, et al. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate. 2022;82(8):928-939. doi:10.1002/pros. 24372
212. Campbell IG, et al. Landscape of Phosphatidylinosi-tol-3-Kinase Pathway alterations in solid tumors. JAMA Oncol. 2016;2(12):1533-1541. doi:10.1001 /jamaoncol.2016.3750
213. Lehmann BD, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer. JAMA Oncol. 2017;3(4): 44 6-454. doi:10.1001/jamaon¬col.2016.6762
214. Raghavan PR. Metadichol, a modulator that controls expression of Toll-Like Receptors in cancer cell lines. Br J Cancer Res. 2024;7(3).