TyG Index in Predicting Arterial Hypertension in Normoglycemic Perimenopausal Women

Main Article Content

L. A. Ruyatkina D. S. Ruyatkin L. V. Shcherbakova

Abstract

Introduction. The critical role of insulin resistance (IR) in the clustering of metabolic syndrome (MetS) in association with hormonal and metabolic parameters of perimenopause determines the need to search for informative IR biomarkers in the prognosis of arterial hypertension for early prevention of cardiometabolic diseases.


Objective: to evaluate the informativeness of the surrogate marker of insulin resistance, TyG index, in predicting hypertension based on the analysis of a perimenopausal normoglycemic cohort.


Patients and methods. Of 88 normoglycemic women aged 35–59 years, 58 women had hypertension and 30 were normotensive. The following were determined: waist circumference (WC), blood pressure, triglycerides (TG), HDL-C, insulin, follicle-stimulating hormone (FSH) and estradiol, fasting glucose, TyG index. Using SPSS (version 23), we estimated the median and (25%; 75%); intergroup differences using the Mann-Whitney test; comparison of proportions using Pearson's χ2; performed correlation analyses: Spearman's (R) and partial correlation (Rрс) to level out the influence of age; binary logistic regression was used to identify prognostic factors. ROC analysis was used to determine the cutoff point of the TYG indicator.


Results. The TyG index statistically significantly correlated with the spectrum of MetS and perimenopause parameters, most closely and stably with partial correlation with insulin, WC, HDL-C, duration of postmenopause, age depending on FSH. Using multiple logistic regression analysis, the following parameters were included in the model: age, insulin, WC, FSH, TyG; the TyG index statistically most significantly associated with the presence of hypertension (OR=22.089; p=0.007). Using ROC analysis, the cutoff point for TYG was determined - 8.7 conventional units with the optimal parameters of the diagnostic test (presence and absence of hypertension): AUC was 0.793 (95% CI: 0.694-0.892), p<0.0001; Se 74%, Sp 67%.


Conclusion. The surrogate indicator of insulin resistance, the TyG index, closely correlated with markers of MetS and perimenopause, being most significantly associated with the presence of hypertension. The cutoff point for TYG was 8.7 conventional units with optimal test parameters. The results of the partial correlation and the presence of age and FSH indices in the diagnostic model reflect a combination of chronological and reproductive aging in the dynamics of the menopausal transition.

Keywords: hypertension, metabolic syndrome, perimenopause, insulin resistance, TyG index, follicle-stimulating hormone

Article Details

How to Cite
RUYATKINA, L. A.; RUYATKIN, D. S.; SHCHERBAKOVA, L. V.. TyG Index in Predicting Arterial Hypertension in Normoglycemic Perimenopausal Women. Medical Research Archives, [S.l.], v. 13, n. 9, sep. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6879>. Date accessed: 07 dec. 2025. doi: https://doi.org/10.18103/mra.v13i9.6879.
Section
Research Articles

References

1. Cybulska AM, Schneider-Matyka D, Wieder-Huszla S, Panczyk M, Jurczak A, Grochans E. Diagnostic markers of insulin resistance to discriminate between prediabetes and diabetes in menopausal women. Eur Rev Med Pharmacol Sci. 2023;27(6):2453-2468. https://doi.org/10.26355/eurrev_202303_31779
2. Uddenberg ER, Safwan N, Saadedine M, Hurtado MD, Faubion SS, Shufelt CL. Menopause transition and cardiovascular disease risk. Maturitas. 2024;185:107974. https://doi.org/10.1016/j.maturitas.2024.107974
3. Wood K, McCarthy S, Pitt H, Randle M, Thomas SL. Women's experiences and expectations during the menopause transition: a systematic qualitative narrative review. Health Promot Int. 2025;40(1):daaf005. https://doi.org/10.1093/heapro/daaf005
4. Meloni A, Cadeddu C, Cugusi L et al. Gender Differences and Cardiometabolic Risk: The Importance of the Risk Factors. Int J Mol Sci. 2023;24(2):1588. https://doi.org/10.3390/ijms24021588
5. Moreau KL. Intersection between gonadal function and vascular aging in women. J Appl Physiol (1985). 2018;125(6):1881-1887. https://doi.org/10.1152/japplphysiol.00117.2018
6. Clayton GL, Soares AG, Kilpi F et al. Cardiovascular health in the menopause transition: a longitudinal study of up to 3892 women with up to four repeated measures of risk factors. BMC Med. 2022;20(1):299. https://doi.org/10.1186/s12916-022-02454-6
7. Mehta JM, Manson JE. The menopausal transition period and cardiovascular risk. Nat Rev Cardiol. 2024;21(3):203-211. https://doi.org/10.1038/s41569-023-00926-7
8. Nair AR, Pillai AJ, Nair N. Cardiovascular Changes in Menopause. Curr Cardiol Rev. 2021;17 (4):e230421187681. https://doi.org/10.2174/1573403X16666201106141811
9. El Khoudary SR, Aggarwal B, Beckie TM et al. American Heart Association Prevention Science Committee of the Council on Epidemiology and Prevention; and Council on Cardiovascular and Stroke Nursing. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation. 2020;142(25):e506-e532. https://doi.org/10.1161/CIR.0000000000000912
10. Tan A, Thomas RL, Campbell MD, Prior SL, Bracken RM, Churm R. Effects of exercise training on metabolic syndrome risk factors in post-menopausal women - A systematic review and meta-analysis of randomised controlled trials. Clin Nutr. 2023;42(3):337-351. https://doi.org/10.1016/j.clnu.2023.01.008
11. Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986-1002. doi: 10.1007/s00125-023-05891-x. Epub 2023 Mar 10. Erratum in: Diabetologia. 2023;66(6):1165. https://doi.org/10.1007/s00125-023-05913-8
12. Tian Z, Yang L, Li Y, Huang Y, Yang J, Xue F. Associations of different insulin resistance-related indices with the incidence and progression trajectory of cardiometabolic multimorbidity: a prospective cohort study from UK biobank. Cardiovasc Diabetol. 2025;24(1):257. https://doi.org/10.1186/s12933-025-02819-0
13. Wang, Y, Chen, Z, Huo, Z. et al. Metabolic Syndrome Evolution and Cardio-Kidney-Metabolic Multimorbidity: Implications for Targeted Prevention. JACC Adv. 2025, 4 (6_Part_2). https://doi.org/10.1016/j.jacadv.2025.101778
14. Zhang W, Chen C, Li M, Yan G, Tang C. Sex Differences in the Associations among Insulin Resistance Indexes with Metabolic Syndrome: A Large Cross-Sectional Study. Int J Endocrinol. 2024; 2024:3352531. https://doi.org/10.1155/2024/3352531
15. Santilli F, D'Ardes D, Guagnano MT, Davi G. Metabolic Syndrome: Sex-Related Cardiovascular Risk and Therapeutic Approach. Curr Med Chem. 2017;24(24):2602-2627. https://doi.org/10.2174/0929867324666170710121145
16. Stanciu S., Rusu E., Miricescu D. et al. Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites. 2023;13(1):87. https://doi.org/10.3390/metabo13010087
17. Guldan M, Unlu S, Abdel-Rahman SM et al. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med. 2024;13(15):4354. https://doi.org/10.3390/jcm13154354
18. Roa-Díaz ZM, Raguindin PF, Bano A, Laine JE, Muka T, Glisic M. Menopause and cardiometabolic diseases: What we (don't) know and why it matters. Maturitas. 2021, 152:48-56. https://doi.org/10.1016/j.maturitas.2021.06.01
19. Ruyatkina LA, Ruyatkin DS; Shcherbakova LV. Hormonal-metabolic trajectory of menopausal transition in a normoglycemic cohort of women with different blood pressure levels. Medical Research Archives, [S.l.], v. 12, n. 1, jan. 2024. ISSN 2375-1924. Available at: . Date accessed: 07 july 2025. doi: https://doi.org/10.18103/mra.v12i1.4972
20. Jeong HG, Park H. Metabolic Disorders in Menopause. Metabolites. 2022;12(10):954. https://doi.org/10.3390/metabo12100954
21. Lee EJ, Keller-Ross ML. Menopause and its effects on autonomic regulation of blood pressure: Insights and perspectives. Auton Neurosci. 2025;260:103295. https://doi.org/10.1016/j.autneu.2025.103295
22. Martin SS, Aday AW, Almarzooq ZI et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149(8):e347-e913. doi: 10.1161/CIR.0000000000001209. Epub 2024 Jan 24. Erratum in: Circulation. 2024 May 7;149(19):e1164. doi: 10.1161/CIR.0000000000001247. Erratum in: Circulation. 2025;151(25):e1095. https://doi.org/10.1161/CIR.0000000000001344
23. De Paoli M, Zakharia A, Werstuck GH. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am J Pathol. 2021;191(9):1490-1498. https://doi.org/10.1016/j.ajpath.2021.05.011
24. Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender differences in insulin resistance: new knowledge and perspectives. Curr Issues Mol Biol. 2023;45(10):7845-7861. https://doi.org/10.3390/cimb45100496
25. Nappi RE, Chedraui P, Lambrinoudaki I, Simoncini T. Menopause: a cardiometabolic transition. Lancet Diabetes Endocrinol. 2022;10(6):442-456. https://doi.org/10.1016/S2213-8587(22)00076-6
26. Ruyatkina L.A., Ruyatkin D.S., Iskhakova I.S. Opportunities and options for surrogate assessment of insulin resistance. Obesity and metabolism. 2019;16(1):27-33. (In Russ.). https://doi.org/10.14341/omet10082
27. Majnarić LT, Martinović I, Šabanović Š, Rudan S, Babič F, Wittlinger T. The Effect of Hypertension Duration and the Age of Onset on CV Risk Factors Expression in Perimenopausal Women. Int J Hypertens. 2019; 2019:9848125. https://doi.org/10.1155/2019/9848125
28. Li Q, Wang X, Ni Y et al. Epidemiological characteristics and risk factors of T2DM in Chinese premenopausal and postmenopausal women. Lipids Health Dis. 2019;18(1):155. https://doi.org/10.1186/s12944-019-1091-7
29. Chikwati RP, Chikowore T, Mahyoodeen NG, Jaff NG, George JA, Crowther NJ. The association of menopause with cardiometabolic disease risk factors in low- and middle-income countries: a systematic review and meta-analyses. Menopause. 2024;31(1):77-85. https://doi.org/10.1097/GME.0000000000002292
30. Li C, Zhang Z, Luo X et al. The triglyceride-glucose index and its obesity-related derivatives as predictors of all-cause and cardiovascular mortality in hypertensive patients: insights from NHANES data with machine learning analysis. Cardiovasc Diabetol. 2025;24(1):47. https://doi.org/10.1186/s12933-025-02591-1
31. Mishra A, Alam F, Mateen S, Jabeen F, Anjum M, Mamrawala N. Fragmented ventricular complexes and blood pressure variability assessed by ambulatory blood pressure monitoring in patients with metabolic syndrome. Cureus. 2024;16(5): e59950. https://doi.org/10.7759/cureus.59950.5
32. Mancia G, Kreutz R, Brunström M et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41(12):1874-2071. https://doi.org/10.1097/HJH.0000000000003480
33. Li S, Tan I, Atkins E, Schutte AE, Gnanenthiran SR. The pathophysiology, prognosis and treatment of hypertension in females from pregnancy to post-menopause: a review. Curr Heart Fail Rep. 2024;21(4):322-336. https://doi.org/10.1007/s11897-024-00672-y
34. Lambrinoudaki I, Armeni E. Understanding of and clinical approach to cardiometabolic transition at the menopause. Climacteric. 2024;27(1):68-74. https://doi.org/10.1080/13697137.2023.2202809
35. Hezam AAM, Shaghdar HBM, Chen L. The connection between hypertension and diabetes and their role in heart and kidney disease development. J Res Med Sci. 2024; 29:22. https://doi.org/10.4103/jrms.jrms_470_23
36. Xie E, Cai H, Ye Z et al. Association of prediabetes and insulin resistance on prognosis of patients with moderate-to-severe coronary artery calcification: a prospective cohort study. Cardiovasc Diabetol. 2025;24(1):262. https://doi.org/10.1186/s12933-025-02807-4
37. Li Z, Kang S, Kang H. Development and validation of nomograms for predicting cardiovascular disease risk in patients with prediabetes and diabetes. Sci Rep. 2024;14(1):20909. https://doi.org/10.1038/s41598-024-71904-3
38. Rao X, Xin Z, Yu Q et al. Triglyceride-glucose-body mass index and the incidence of cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol. 2025;24(1):34. https://doi.org/10.1186/s12933-025-02584-0
39. Sherling DH, Perumareddi P, Hennekens CH. Metabolic Syndrome: Clinical and Policy Implications of the New Silent Killer. Journal of Cardiovascular Pharmacology and Therapeutics. 2017;22(4):365-367. https://doi.org/10.1177/1074248416686187
40. Wolosowicz M, Prokopiuk S, Kaminski TW. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? Medicina (Kaunas). 2022;58(4):472. https://doi.org/10.3390/medicina58040472
41. Pascual-Morena C, Cavero-Redondo I, Martínez-García I et al. Exploring the influence of insulin resistance on arterial stiffness in healthy adults: from the metabolic and cardiovascular health insights of the EVasCu Study. Nutrients. 2024;16(6):791. https://doi.org/10.3390/nu16060791
42. Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev. 2020;27(6):515-526. https://doi.org/10.1007/s40292-020-00408-8
43. Liao J, Wang L, Duan L et al. Association between estimated glucose disposal rate and cardiovascular diseases in patients with diabetes or prediabetes: a cross-sectional study. Cardiovasc Diabetol. 2025;24(1):13. https://doi.org/10.1186/s12933-024-02570-y
44. Gounden V, Devaraj S, Jialal I. The role of the triglyceride-glucose index as a biomarker of cardio-metabolic syndromes. Lipids Health Dis. 2024;23(1):416. https://doi.org/10.1186/s12944-024-02412-6
45. Chen X, Yang J, Wang D et al. Impact of triglyceride-glucose index on risk of cardiovascular disease among non-diabetic hypertension patients: a 10-year prospective cohort study. BMC Public Health. 2025;25(1):326. https://doi.org/10.1186/s12889-025-21522-z
46. D'Elia L. Is the triglyceride-glucose index ready for cardiovascular risk assessment? Nutr Metab Cardiovasc Dis. 2025;35(3):103834. https://doi.org/10.1016/j.numecd.2024.103834
47. Blicher MK, Frary C, Pareek M et al. Triglyceride-glucose index improves risk prediction beyond traditional risk factors and hypertension mediated organ damage in healthy adults. Nutr Metab Cardiovasc Dis. 2024;34(11):2446-2454. https://doi.org/10.1016/j.numecd.2024.06.010
48. Di Fiore V, Cappelli F, Del Punta L et al. Novel Techniques, Biomarkers and Molecular Targets to Address Cardiometabolic Diseases. J Clin Med. 2024;13(10):2883. https://doi.org/10.3390/jcm13102883
49. Pontiroli AE, La Sala L, Tagliabue E et al. Evaluating the Prognostic Value of the Triglyceride-Glucose Index in Different Populations: A Critical Analysis. Nutrients. 2025;17(7):1124. https://doi.org/10.3390/nu17071124
50. Avagimyan A, Pogosova N, Fogacci F et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol. 2025; 418:132663. doi: 10.1016/j.ijcard.2024.132663. Epub 2024 Oct 18. Erratum in: Int J Cardiol. 2025 Feb 15; 421:132907. https://doi.org/10.1016/j.ijcard.2024.132907
51. Zhang J, Zhan Q, Deng Z et al. Does diabetes modify the triglyceride-glucose index associated with cardiovascular events and mortality? A meta-analysis of 50 cohorts involving 7,239,790 participants. Cardiovasc Diabetol. 2025;24(1):42. https://doi.org/10.1186/s12933-025-02585-z
52. Dakota I, Huang W, Wijayanto MA et al. Prognostic value of triglyceride-glucose index on predicting major adverse cardiovascular events in hypertensive patients: a systematic review and meta-analysis. Am J Prev Cardiol. 2025; 22:100996. https://doi.org/10.1016/j.ajpc.2025.100996
53. Tahapary DL, Pratisthita LB, Fitri NA et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. https://doi.org/10.1016/j.dsx.2022.102581
54. Yuan Y, Sun W, Kong X. Comparison between distinct insulin resistance indices in measuring the development of hypertension: The China Health and Nutrition Survey. Front Cardiovasc Med. 2022; 9:912197. https://doi.org/10.3389/fcvm.2022.912197
55. Wan H, Cao H, Ning P. Superiority of the triglyceride glucose index over the homeostasis model in predicting metabolic syndrome based on NHANES data analysis. Sci Rep. 2024;14(1):15499. https://doi.org/10.1038/s41598-024-66692-9
56. Molavizadeh D, Cheraghloo N, Tohidi M, Azizi F, Hadaegh F. The association between index-year, average, and variability of the triglyceride-glucose index with health outcomes: more than a decade of follow-up in Tehran lipid and glucose study. Cardiovasc Diabetol. 2024;23(1):321. https://doi.org/10.1186/s12933-024-02387-9
57. Aljuraiban GS, Alharbi FJ, Aljohi AO et al. Triglyceride-Glucose Index (TyG Index) in Association with Blood Pressure in Adults: A Retrospective Study. Int J Gen Med. 2024; 17:3395-3402. https://doi.org/10.2147/IJGM.S469147
58. Argoty-Pantoja AD, Velázquez-Cruz R, Meneses-León J, Salmerón J, Rivera-Paredez B. Triglyceride-glucose index is associated with hypertension incidence up to 13 years of follow-up in mexican adults. Lipids Health Dis. 2023;22(1):162. https://doi.org/10.1186/s12944-023-01925-w
59. Zhao L, Zheng L, Wang R et al. Association between triglyceride glucose combined with body mass index and hypertension in the NHANES 2017 to 2020. Sci Rep. 2025;15(1):9092. https://doi.org/10.1038/s41598-025-93723-w
60. Nayak SS, Kuriyakose D, Polisetty LD et al. Diagnostic and prognostic value of triglyceride glucose index: a comprehensive evaluation of meta-analysis. Cardiovasc Diabetol. 2024;23(1):310. https://doi.org/10.1186/s12933-024-02392-y
61. Zeng P, Deng J, Zhong Y et al. Interaction between triglyceride-glucose-body mass index and age in coronary artery stenosis severity: a sex-stratified exploratory analysis. BMC Cardiovasc Disord. 2025;25(1):509. https://doi.org/10.1186/s12872-025-04977-1
62. Zhang B, Jiang D, Ma H, Liu H. Association between triglyceride-glucose index and its obesity indicators with hypertension in postmenopausal women: a cross-sectional study. Front Nutr. 2025; 12:1623697. https://doi.org/10.3389/fnut.2025.1623697
63. Li C, Zhang Y, Wu X et al. Prognostic value of the triglyceride-glucose index for adverse cardiovascular outcomes in young adult hypertension. Clin Hypertens. 2024;30(1):25. https://doi.org/10.1186/s40885-024-00274-9
64. Harlow SD, Gass M, Hall JE et al. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012;15(2):105-14. https://doi.org/10.3109/13697137.2011.650656
65. Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68. https://doi.org/10.1186/s12933-022-01511-x
66. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487-1495. https://doi.org/10.2337/diacare.27.6.1487
67. Ruyatkina LA, Ruyatkin DS, Shcherbakova LV. Factors of the arterial hypertension formation as a phenotype of metabolic syndrome in perimenopause. Medical Research Archives, [S.l.], v. 12, n. 11, Nov. 2024. ISSN 2375-1924. Available at: . Date accessed: 04 aug. 2025. doi: https://doi.org/10.18103/mra.v12i11.5857.
68. Ramdas Nayak VK, Satheesh P, Shenoy MT, Kalra S. Triglyceride Glucose (TyG) Index: A surrogate biomarker of insulin resistance. J Pak Med Assoc. 2022;72(5):986-988. https://doi.org/10.47391/JPMA.22-63
69. Pamplona R, Jové M, Gómez J, Barja G. Programmed versus non-programmed evolution of aging. What is the evidence? Exp Gerontol. 2023; 175:112162. https://doi.org/10.1016/j.exger.2023.112162
70. Mc Auley MT. The evolution of ageing: classic theories and emerging ideas. Biogerontology. 2024;26(1):6. https://doi.org/10.1007/s10522-024-10143-5
71. Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev. 2025;105(3):1609-1694. https://doi.org/10.1152/physrev.00045.2024
72. Chen L, Tan KM, Xu J et al. Exploring multi-omics and clinical characteristics linked to accelerated biological aging in Asian women of reproductive age: insights from the S-PRESTO study. Genome Med. 2024;16(1):128. https://doi.org/10.1186/s13073-024-01403-7
73. Maas AHEM, Rosano G, Cifkova R et al. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur Heart J. 2021 Mar 7;42(10):967-984. doi: 10.1093/eurheartj/ehaa1044. Erratum in: Eur Heart J. 2022;43(25):2372. https://doi.org/10.1093/eurheartj/ehac123
74. Rodriguez de Morales YA, Abramson BL. Cardiovascular and physiological risk factors in women at mid-life and beyond. Can J Physiol Pharmacol. 2024;102(8):442-451. https://doi.org/10.1139/cjpp-2023-0468
75. Fasero M, Coronado PJ. Cardiovascular Disease Risk in Women with Menopause. J Clin Med. 2025;14(11):3663. https://doi.org/10.3390/jcm14113663
76. Tepper PG, Randolph JF Jr, McConnell DS, et al. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women's Health across the Nation (SWAN). J Clin Endocrinol Metab. 2012;97(8):2872-80. https://doi.org/10.1210/jc.2012-1422
77. Monteleone P, Mascagni G, Giannini A, Genazzani AR, Simoncini T. Symptoms of menopause - global prevalence, physiology and implications. Nat Rev Endocrinol. 2018;14(4):199-215. https://doi.org/10.1038/nrendo.2017.180
78. Santoro N, Roeca C, Peters BA, Neal-Perry G. The Menopause Transition: Signs, Symptoms, and Management Options. J Clin Endocrinol Metab. 2021;106(1):1-15. https://doi.org/10.1210/clinem/dgaa764
79. Inman ZC, Flaws JA. Impact of Real-life Environmental Exposures on Reproduction: Endocrine-disrupting chemicals, reproductive aging, and menopause. Reproduction. 2024;168(5):e 240113. https://doi.org/10.1530/REP-24-0113
80. Mumusoglu S, Yildiz BO. Metabolic Syndrome During Menopause. Curr Vasc Pharmacol. 2019;17(6):595-603. https://doi.org/10.2174/1570161116666180904094149
81. Sharma VR, Matta ST, Haymond MW, Chung ST. Measuring Insulin Resistance in Humans. Horm Res Paediatr. 2020;93(11-12):577-588. https://doi.org/10.1159/000515462
82. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne). 2023; 14:1149239. https://doi.org/10.3389/fendo.2023.1149239
83. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. https://doi.org/10.1186/s12933-018-0762-4
84. Ren X, Chen M, Lian L et al.The triglyceride-glucose index is associated with a higher risk of hypertension: evidence from a cross-sectional study of Chinese adults and meta-analysis of epidemiology studies. Front Endocrinol (Lausanne). 2025; 16:1516328. https://doi.org/10.3389/fendo.2025.1516328
85. Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol. 2016;90(5):596-608. https://doi.org/10.1124/mol.116.104398
86. Cheng Y, Zhu H, Ren J et al. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat Commun. 2023;14(1):6991. https://doi.org/10.1038/s41467-023-42801-6
87. Xu C, He Z, Song Y, Shao S, Yang G, Zhao J. Atypical pituitary hormone-target tissue axis. Front Med. 2023;17(1):1-17. https://doi.org/10.1007/s11684-022-0973-7
88. Li Y, Zheng M, Limbara S et al. Effects of the pituitary-targeted gland axes on hepatic lipid homeostasis in endocrine-associated fatty liver disease-a concept worth revisiting. J Clin Transl Hepatol. 2024;12(4):416-427. https://doi.org/10.14218/JCTH.2023.00421
89. Gallo G, Volpe M, Savoia C. Endothelial dysfunction in hypertension: current concepts and clinical implications. Front Med (Lausanne). 2021; 8:798958. https://doi.org/10.3389/fmed.2021.798958
90. Zheng X, Chen Y, Lin SQ et al. Exploring the impact of women-specific reproductive factors on phenotypic aging and the role of life's essential 8. Nutr J. 2024;23(1):96. https://doi.org/10.1186/s12937-024-00999-1
91. Janssen EBNJ, Ghossein-Doha C, Hooijschuur MCE et al. Hypertension and cardiometabolic disorders appear 5-10 years earlier in women with pre-eclampsia. Eur J Prev Cardiol. 2025: zwaf187. https://doi.org/10.1093/eurjpc/zwaf187
92. Li X, Wang J, Zhang M, et al. Biological aging mediates the associations of metabolic score for insulin resistance with all-cause and cardiovascular disease mortality among US adults: A nationwide cohort study. Diabetes Obes Metab. 2024;26(9):3552-3564. https://doi.org/10.1111/dom.15694
93. Erdoğan K, Sanlier N. Metabolic syndrome and menopause: the impact of menopause duration on risk factors and components. Int J Womens Health. 2024; 16:1249-1256. https://doi.org/10.2147/IJWH.S460645
94. Marsh ML, Oliveira MN, Vieira-Potter VJ. Adipocyte Metabolism and Health after the Menopause: The Role of Exercise. Nutrients. 2023;15(2):444. https://doi.org/10.3390/nu15020444
95. Chen X, Xi H, Ji L et al. Relationships between menstrual status and obesity phenotypes in women: a cross-sectional study in northern China. BMC Endocr Disord. 2020;20(1):91. https://doi.org/10.1186/s12902-020-00577-6
96. Strack C, Behrens G, Sag S et al. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol Sex Differ. 2022;13(1):8. https://doi.org/10.1186/s13293-022-00416-4
97. Yu W, Zhou G, Fan B et al. Temporal sequence of blood lipids and insulin resistance in perimenopausal women: the study of women's health across the nation. BMJ Open Diabetes Res Care. 2022;10(2):e002653. https://doi.org/10.1136/bmjdrc-2021-002653
98. Davis SR, Castelo-Branco C, Chedraui P et al. Understanding weight gain at menopause. Climacteric. 2012;15(5):419-29. https://doi.org/10.3109/13697137.2012.707385
99. Porada D, Gołacki J, Matyjaszek-Matuszek B. Obesity in perimenopause - current treatment options based on pathogenetic factors. Endokrynol Pol. 2023;74(6). https://doi.org/10.5603/ep.96679
100. Karaflou M, Goulis DG. Body composition analysis: A snapshot across the perimenopause. Maturitas. 2024; 180:107898. https://doi.org/10.1016/j.maturitas.2023.107898
101. Ayesh H, Nasser SA, Ferdinand KC, Carranza Leon BG. Sex-Specific Factors Influencing Obesity in Women: Bridging the Gap Between Science and Clinical Practice. Circ Res. 2025;136(6):594-605. https://doi.org/10.1161/CIRCRESAHA.124.325535
102. Marlatt KL, Pitynski-Miller DR, Gavin KM et al. Body composition and cardiometabolic health across the menopause transition. Obesity (Silver Spring). 2022;30(1):14-27. https://doi.org/10.1002/oby.23289
103. Clayton GL, Borges MC, Lawlor DA. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat Commun. 2024;15(1):1103. https://doi.org/10.1038/s41467-023-44459-6
104. Franceschi C, Garagnani P, Parini, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018; 14:576–590. https://doi.org/10.1038/s41574-018-0059-4
105. Bjune JI, Strømland PP, Jersin R, Mellgren G, Dankel SN et al. Metabolic and epigenetic regulation by estrogen in adipocytes. Front. Endocrinol. 2022:13:828780. https://doi.org/10.3389/fendo.2022.828780
106. Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab. 2023:14:204201882311 99359. https://doi.org/10.1177/20420188231199359
107. Opoku AA, Abushama M, Konje JC. Obesity and menopause. Best Pract Res Clin Obstet Gynaecol. 2023; 88:102348. https://doi.org/10.1016/j.bpobgyn.2023.102348
108. Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol. 2022; 13:1043237. https://doi.org/10.3389/fphys.2022.1043237
109. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023; 186:243–278. https://doi.org/10.1016/j.cell.2022.11.001
110. Chimenti I, Cammisotto V. Special Issue "Effects of Dyslipidemia and Metabolic Syndrome on Cardiac and Vascular Dysfunction". Int J Mol Sci. 2024;26(1):155. https://doi.org/10.3390/ijms26010155
111. Hallajzadeh J, Khoramdad M, Izadi N et al. Metabolic syndrome and its components in premenopausal and postmenopausal women: A comprehensive systematic review and meta-analysis on observational studies. Menopause. 2018; 25:1155–1164. https://doi.org/10.1097/gme.0000000000001136
112. Alcover S, Ramos-Regalado L, Girón G, Muñoz-García N, Vilahur G. HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome. Antioxidants (Basel). 2025;14(4):434. https://doi.org/10.3390/antiox14040434
113. Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther. 2024; 18:3337-3360. https://doi.org/10.2147/DDDT.S468147
114. Mitu I, Dimitriu CD, Preda C et al. The Importance of HDL-Cholesterol and Fat-Free Percentage as Protective Markers in Risk Factor Hierarchy for Patients with Metabolic Syndrome. Metabolites. 2022;12(12):1217. https://doi.org/10.3390/metabo12121217
115. Chaudhry A, Ikram K, Ayesha K et al. The Comparative Study of Serum Estrogen and Lipid Profile in Pre- and Post-menopausal Women as Atherosclerosis Risk Factors in Pakistan. Cureus. 2024;16(7): e65604. https://doi.org/10.7759/cureus.65604
116. Abedi F, Sadeghi M, Omidkhoda N et al. HDL-cholesterol concentration and its association with coronary artery calcification: a systematic review and meta-analysis. Lipids Health Dis. 2023;22(1):60. https://doi.org/10.1186/s12944-023-01827-x
117. El Khoudary SR, Nasr A, Matthews KA et al. Associations of HDL metrics with coronary artery calcium score and density among women traversing menopause. J Lipid Res. 2021; 62:100098. https://doi.org/10.1016/j.jlr.2021.100098
118. Schmiegelow MD, Hedlin H, Stefanick ML et al. Insulin Resistance and Risk of Cardiovascular Disease in Postmenopausal Women: A Cohort Study From the Women's Health Initiative. Circ Cardiovasc Qual Outcomes. 2015;8(3):309-16. https://doi.org/10.1161/CIRCOUTCOMES.114.001563
119. Taneja C, Gera S, Kim SM, Iqbal J, Yuen T, Zaidi M. FSH-metabolic circuitry and menopause. J Mol Endocrinol. 2019;63(3):R73-R80. https://doi.org/10.1530/JME-19-0152
120. Serviente C, Tuomainen TP, Virtanen J, Witkowski S, Niskanen L, Bertone-Johnson E. Follicle-stimulating hormone is associated with lipids in postmenopausal women. Menopause. 2019;26(5):540-545. https://doi.org/10.1097/GME.0000000000001273
121. Xu Z, Gu S, Wu X, Zhou Y, Li H, Tang X. Association of follicle stimulating hormone and serum lipid profiles in postmenopausal women. Medicine (Baltimore). 2022;101(39): e30920. https://doi.org/10.1097/MD.0000000000030920
122. Ahmed B, Farb MG, Gokce N. Cardiometabolic implications of adipose tissue aging. Obes Rev. 2024;25(11): e13806. https://doi.org/10.1111/obr.13806
123. Harraqui K, Oudghiri DE, Hannoun Z et al. Frequency of Metabolic Syndrome and Study of Anthropometric, Clinical and Biological Characteristics in Peri- and Postmenopausal Women in the City of Ksar El Kebir (Northern Morocco). Int J Environ Res Public Health. 2022;19(10):6109. https://doi.org/10.3390/ijerph19106109
124. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016; 37:278–316. https://doi.org/10.1210/er.2015-1137
125. Gigante B, Chen Q, Björkbacka H et al. Lipoproteins and lipoprotein lipid composition are associated with stages of dysglycemia and subclinical coronary atherosclerosis. Int J Cardiol. 2025; 419:132698. https://doi.org/10.1016/j.ijcard.2024.132698
126. Lin L, Hu X, Liu X, Hu G. Key influences on dysglycemia across Fujian's urban-rural divide. PLoS One. 2024;19(7): e0308073. https://doi.org/10.1371/journal.pone.0308073
127. Nam MJ, Kim H, Choi YJ et al. A Longitudinal Retrospective Observational Study on Obesity Indicators and the Risk of Impaired Fasting Glucose in Pre- and Postmenopausal Women. J Clin Med. 2022;11(10):2795. https://doi.org/10.3390/jcm11102795
128. Lee HR, Shin J, Han K et al. Obesity and Risk of Diabetes Mellitus by Menopausal Status: A Nationwide Cohort Study. J Clin Med. 2021;10(21):5189. https://doi.org/10.3390/jcm10215189
129. Saei Ghare Naz M, Farhadi-Azar M, Noroozzadeh M, Farahmand M, Ramezani Tehrani F. Follicle-Stimulating Hormone and Diabetes in Postmenopausal Women: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2024;109(8):2149-2160. https://doi.org/10.1210/clinem/dgae198
130. Fahed G, Aoun L, Bou Zerdan M et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23(2):786. https://doi.org/10.3390/ijms23020786
131. Islam MS, Wei P, Suzauddula M et al. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med. 2024;30(1):279. https://doi.org/10.1186/s10020-024-01019-y
132. Chen Z, Wen J. Elevated triglyceride-glucose (TyG) index predicts impaired islet β-cell function: A hospital-based cross-sectional study. Front Endocrinol (Lausanne). 2022; 13:973655. https://doi.org/10.3389/fendo.2022.973655
133. Xue Y, Zuo S, Wang F, Qi X. From hormones to neurodegeneration: how FSH drives Alzheimer's disease. Front Aging Neurosci. 2025; 17:1578439. https://doi.org/10.3389/fnagi.2025.1578439
134. Xu J, Xu W, Chen G, Hu Q, Jiang J. Association of TyG index with prehypertension or hypertension: a retrospective study in Japanese normoglycemia subjects. Front Endocrinol (Lausanne). 2023; 14:1288693. https://doi.org/10.3389/fendo.2023.1288693
135. Hou B, Hou X, Liu D et al. Predictive value of the triglyceride-glucose index for coronary artery bypass grafting-acute kidney injury patients. BMC Cardiovasc Disord. 2025;25(1):206. https://doi.org/10.1186/s12872-025-04584-0
136. Wang C, Liu D, Lu J et al. Gender differences in the relationship between the triglyceride-glucose index and serum Klotho concentrations among the middle-aged and elderly: a cross-sectional analysis. BMC Endocr Disord. 2024;24(1):185. https://doi.org/10.1186/s12902-024-01726-x
137. Guo J, Yang J, Wang J et al. Exploring Gender Differences in the Association Between TyG Index and COPD: A Cross-Sectional Study from NHANES 1999-2018. Int J Chron Obstruct Pulmon Dis. 2024; 19:2001-2010. https://doi.org/10.2147/COPD.S473089
138. Jia G, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension. 2021;78(5):1197-1205. https://doi.org/10.1161/HYPERTENSIONAHA.121.17981
139. Kosmas CE, Bousvarou MD, Kostara CE, Papakonstantinou EJ, Salamou E, Guzman E. Insulin resistance and cardiovascular disease. J Int Med Res. 2023;51(3):3000605231164548. https://doi.org/10.1177/03000605231164548
140. Huang Y, Zhou Y, Xu Y et al. Inflammatory markers link triglyceride-glucose index and obesity indicators with adverse cardiovascular events in patients with hypertension: insights from three cohorts. Cardiovasc Diabetol. 2025;24(1):11. https://doi.org/10.1186/s12933-024-02571-x
141. Yan Y, Wang D, Sun Y et al. Triglyceride-glucose index trajectory and arterial stiffness: results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovasc Diabetol. 2022;21(1):33. https://doi.org/10.1186/s12933-022-01453-4
142. Tetlow N, Whittle J. Prehabilitation: Do We Need Metabolic Flexibility? Ann Nutr Metab. 2025;81(4):223-233. https://doi.org/10.1159/000545266
143. Dörner R, Hägele FA, O'Donovan SD, Miles-Chan JL, Müller MJ, Bosy-Westphal A. Diurnal differences in postprandial glucose and triglyceride metabolism reveal metabolic flexibility and resilience. Am J Physiol Cell Physiol. 2025;328(5):C1383-C1388. https://doi.org/10.1152/ajpcell.00102.2025
144. Berthier A, Gheeraert C, Vinod M et al. Unveiling the molecular legacy of transient insulin resistance: Implications for hepatic metabolic adaptability. J Hepatol. 2025;83(2):315-328. https://doi.org/10.1016/j.jhep.2025.02.004
145. Su J, Li Z, Huang M et al. Triglyceride glucose index for the detection of the severity of coronary artery disease in different glucose metabolic states in patients with coronary heart disease: a RCSCD-TCM study in China. Cardiovasc Diabetol. 2022;21(1):96. https://doi.org/10.1186/s12933-022-01523-7
146. Olsen MH, Andersen UB, Wachtell K, Ibsen H, Dige-Petersen H. A possible link between endothelial dysfunction and insulin resistance in hypertension. A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension. Blood Press. 2000;9(2-3):132-9. https://doi.org/10.1080/080370500453474
147. Cheng W, Du Z, Lu B. Chronic low-grade inflammation associated with higher risk and earlier onset of cardiometabolic multimorbidity in middle-aged and older adults: a population-based cohort study. Sci Rep. 2024;14(1):22635. https://doi.org/10.1038/s41598-024-72988-7
148. Rakotoarivelo V, Lacraz G, Mayhue M et al. Inflammatory cytokine profiles in visceral and subcutaneous adipose tissues of obese patients undergoing bariatric surgery reveal lack of correlation with obesity or diabetes. EBioMedicine. 2018; 30:237–247. https://doi.org/10.1016/j.ebiom.2018.03.004
149. Yang HR, Tu TH, Jeong DY, Yang S, Kim JG. Obesity induced by estrogen deficiency is associated with hypothalamic inflammation. Biochem Biophys Rep. 2020; 23:100794. https://doi.org/10.1016/j.bbrep.2020.100794
150. Hill MA, Yang Y, Zhang L et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021; 119:154766. https://doi.org/10.1016/j.metabol.2021.154766
151. Cho H, Lai CC, Bonnavion R et al. Endothelial insulin resistance induced by adrenomedullin mediates obesity-associated diabetes. Science. 2025;387(6734):674-682. https://doi.org/10.1126/science.adr4731
152. Marjot T. The endothelium as the gatekeeper of insulin's action on metabolic tissues: Implications for MASLD and MASH. J Hepatol. 2025 Jun 28: S0168-8278(25)02262-7. https://doi.org/10.1016/j.jhep.2025.06.001
153. Horton WB, Love KM, Gregory JM, Liu Z, Barrett EJ. Metabolic and vascular insulin resistance: partners in the pathogenesis of cardiovascular disease in diabetes. Am J Physiol Heart Circ Physiol. 2025;328(6):H1218-H1236. https://doi.org/10.1152/ajpheart.00826.2024
154. Chen X, Yao H, Lai J et al. Endothelial versus Metabolic Insulin Resistance, A Descriptive Review. Curr Diabetes Rev.;21(4):94-105. https://doi.org/10.2174/0115733998288601240327065724
155. Malin SK, Erdbrügger U. Extracellular Vesicles in Metabolic and Vascular Insulin Resistance. J Vasc Res.;61(3):129-141. https://doi.org/10.1159/000538197
156. Brie AD, Christodorescu RM, Popescu R, Adam O, Tîrziu A, Brie DM. Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines. 2025;13(6):1291. https://doi.org/10.3390/biomedicines13061291
157. Lee SW, Hwang IS, Jung G, Kang HJ, Chung YH. Relationship between metabolic syndrome and follicle-stimulating hormone in postmenopausal women. Medicine (Baltimore). 2022;101(18): e29216. https://doi.org/10.1097/MD.0000000000029216
158. Chen Y, Wang C, Sun B et al. Associations of follicle-stimulating hormone and luteinizing hormone with metabolic syndrome during the menopausal transition from the National Health and Nutrition Examination Survey. Front Endocrinol (Lausanne). 2023; 14:1034934. https://doi.org/10.3389/fendo.2023.1034934
159. Liu X, Xu J, Wei D, Chen Y. Associations of Serum Follicle-Stimulating Hormone and Luteinizing Hormone Levels with Fat and Lean Mass during Menopausal Transition. Obes Facts. 2023;16(2):184-193. https://doi.org/10.1159/000528317
160. Zhang C, Zhao M, Li Z, Song Y. Follicle-Stimulating Hormone Positively Associates with Metabolic Factors in Perimenopausal Women. Int J Endocrinol. 2020; 2020:7024321. https://doi.org/10.1155/2020/7024321
161. Samargandy S, Matthews KA, Brooks MM et al. Trajectories of Blood Pressure in Midlife Women: Does Menopause Matter? Circ Res. 2022;130(3):312-322. https://doi.org/10.1161/CIRCRESAHA.121.319424
162. Rocca MS, Pannella M, Bayraktar E et al. Extragonadal function of follicle-stimulating hormone: Evidence for a role in endothelial physiology and dysfunction. Mol Cell Endocrinol. 2024; 594:112378. https://doi.org/10.1016/j.mce.2024.112378
163. Huang WY, Chen DR, Kor CT et al. Relationships between follicle-stimulating hormone and adiponectin in postmenopausal women. Metabolites. 2020;10(10):420. https://doi.org/10.3390/metabo10100420
164. Vincent V, Thakkar H, Sen A et al. Adiponectin mediated metabolic and sphingolipid alterations in preventing endothelial dysfunction. Mol Cell Biochem. 2025;480(7):4365-4377. doi: 10.1007/s11010-025-05268-1
165. Aljafary MA, Al-Suhaimi EA. Adiponectin System (Rescue Hormone): The Missing Link between Metabolic and Cardiovascular Diseases. Pharmaceutics. 2022; 14(7):1430. https://doi.org/10.3390/pharmaceutics14071430
166. Wang Y, Cheng T, Zhang T, Guo R, Ma L, Zhao W. Association of triglyceride glucose index with incident diabetes among individuals with normal fasting triglycerides and fasting plasma glucose values: a general population-based retrospective cohort study. Front Endocrinol (Lausanne). 2025; 16:1598171. https://doi.org/10.3389/fendo.2025.1598171
167. Liu X, Tan Z, Huang Y et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124. https://doi.org/10.1186/s12933-022-01546-0
168. Alotaibi A, Mahapatro A, Mirchandani M et al. Triglyceride-glucose index as a marker in cardiovascular diseases; a bibliometric study and visual analysis. Ann Med Surg (Lond). 2025;87(3):1487-1505. https://doi.org/10.1097/MS9.0000000000003019
169. Shan S, Li S, Lu K et al. Associations of the Triglyceride and glucose index with hypertension stages, phenotypes, and their progressions among middle-aged and older Chinese. Int J Public Health. 2023; 68:1605648. https://doi.org/10.3389/ijph.2023.1605648
170. Tu W, Xu R, Wang D et al. Triglyceride-glucose index and its related factors may be predictors for cardiovascular disease among Chinese postmenopausal women: a 12-year cohort study. Lipids Health Dis. 2025;24(1):218. https://doi.org/10.1186/s12944-025-02643-1
171. Nappi RE, Simoncini T. Menopause transition: a golden age to prevent cardiovascular disease. Lancet Diabetes Endocrinol. 2021;9(3):135-137. https://doi.org/10.1016/S2213-8587(21)00018-8