Artificial intelligence in modern clinical practice
Main Article Content
Abstract
Overview: Artificial Intelligence (AI) has transformed from theoretical concept to practical reality in healthcare, revolutionizing disease diagnosis, treatment, and management. This technology uses machine learning and deep learning algorithms to analyze complex medical datasets, significantly improving diagnostic accuracy, treatment efficiency, and personalized patient care.
Clinical Applications: AI has revolutionized medical imaging across specialties. In radiology, systems detect lung nodules and pneumonia with high accuracy, while supporting mammography for early cancer detection. Digital pathology benefits from AI's ability to identify cancers and quantify biomarkers invisible to human eyes. Ophthalmology and dermatology applications include detecting diabetic retinopathy and classifying skin lesions with specialist-level accuracy.
Beyond imaging, AI enables early disease detection by integrating electronic health records and biomarkers to identify predictive patterns before symptoms appear. Applications span oncology risk prediction, cardiovascular ECG analysis, and chronic disease management through wearable device monitoring.
Treatment and Operations: AI transforms treatment through personalized medicine, combining genomic and clinical data to predict therapy responses. In surgery, AI enhances robot-assisted procedures with real-time feedback and precision guidance. Drug discovery acceleration includes genomic database analysis and virtual compound screening, with AI-developed drugs entering clinical trials.
Healthcare operations benefit from AI through intelligent scheduling, patient flow management, and resource allocation. Natural Language Processing extracts valuable information from clinical documentation, while predictive analytics optimize hospital workflows and supply chain management.Challenges and Future Directions.
Despite promising applications, AI faces significant implementation challenges. Algorithmic bias risks perpetuating healthcare disparities, while "black box" models limit transparency and clinical trust. Data privacy, regulatory frameworks, integration costs, and clinician resistance present additional barriers.The future lies in collaborative models where AI enhances rather than replaces clinical expertise. Success requires coordinated efforts to develop explainable, robust systems while addressing ethical concerns and ensuring equitable implementation that maintains core healthcare values.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017;2(24):230-243.
3. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 2022;28(1):31-38.
4. Inglada Galiana L, Corral Gudino L, Miramontes González P. Ethics and artificial intelligence. Rev Clin Esp (Barc) 2024;224(3):178-186. doi: 10.1016/ j.rceng.2024.02.003
5. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Adam Bohr, Kaveh Memarzadeh. Artificial Intelligence in Healthcare. Academic Press; 2020. p. 25-60. https://doi.org/10.1016/B978-0-12-818438-7.00002-2.
6. Obermeyer Z, Emanuel EJ. Predicting the Future – Big Data, Machine Learning, And Clinical Medicine. N Engl J Med 2016;375(13):1216-1219. doi: 10.1056/NEJMp1606181.
7. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou C, et al. A guide to deep learning in healthcare. Nat Med 2019;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
8. Panch T, Pearson-Stuttard J, Greaves F, Atun R. Artificial intelligence: opportunities and risks for public health. Lancet Digit Health 2019;1(1):e13-e14. doi: 10.1016/S2589-7500(19)30002-0
9. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F et al. Do not harm: a roadmap for responsible machine learning for health care. Nat Med 2019;25(9):1337-1340. doi: 10.1038/s41591-019-0548-6
10. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17(1):195. doi: 10.1186/s12916-019-1426-2.
11. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H et al. International evaluation of an AI system for breast cancer screening. Nature 2020;577(7788):89-94. doi: 10. 1038/s41586-019-1799-6.
12. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019;25(6):954-961. doi: 10.1038/s41591-019-0447-x
13. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 2019;16(11):703-715. doi: 10.1038/s41571-019-0252-y
14. Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A et al. Development and validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA 2017;318(22):2211-2223. doi: 10. 1001/jama.2017.18152
15. Alpar S, Tatlıparmak AC. Evaluating smartwatch-based detection of supraventricular tachycardia and atrial fibrillation in the emergency department. Am J Emerg Med 2025;95:101-106.
16. Lin E, Lin CH, Lane HY. Deep Learning with Neuroimaging and Genomics in Alzheimer's Disease. Int J Mol Sci. 2021;22(15):7911.
17. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-930. doi:10.1126/science.aar3247
18. Christopoulos G, Graff-Radford J, Lopez CL, Yao X, Attia ZI, Rabinstein AA et al. Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation: A Population-Based Study. Circ Arrhythm Electrophysiol 2020;13(12):e009355. doi: 10.1161/CIRCEP.120.009355
19. Sahu A, Nema P, Rajak D, Purohit A, Rawal R, Soni V, Kashaw SK. Exploring AI tools and multi-omics for precision medicine in lung cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25) 00071-1. doi: 10.1016/j.cytogfr.2025.06.001
20. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M et al. Digital twins to personalize medicine. Genome Med 2019;12(1):4. doi: 10.1186/s13073-019-0701-3.
21. Park SH, Han K, Jang HY, Park JE, Lee JG, Kim DW et al. Methods for Clinical Evaluation of Artificial Intelligence Algorithms for Medical Diagnosis. Radiology 2023;306(1):20-31. doi: 10. 1148/radiol.220182
22. Skampardoni I, Nasrallah IM, Abdulkadir A, Wen J, Melhem R, Mamourian E et al. Genetic and Clinical Correlates of AI-Based Brain Aging Patterns in Cognitively Unimpaired Individuals. JAMA Psychiatry 2024;81(5):456-467. doi: 10.1001 /jamapsychiatry.2023.5599
23. World Health Organization (WHO). Ethics and governance of artificial intelligence for health. WHO guidance. 2021.
24. Wojtara M, Rana E, Rahman T, Khanna P, Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin Transl Sci. 2023;16(11):2106-2111. doi: 10.1111/cts.13619
25. FDA. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA Guidance; 2025.
26. Stokes JM, Yank K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020;180(4 ):688-702.e13. doi: 10.1016/j.cell.2020.01.021.
27. Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2025;43(1):63-75. doi: 10.1038/s41587-024-02143-0. Epub 2024 Mar 8.
28. Saito S, Sakamoto S, Higuchi K, Sato K, Zhao X, Wakai K et al. Machine-learning predicts time-series prognosis factors in metastatic prostate cancer patients treated with androgen deprivation therapy. Sci Rep 2023;13(1):6325.
29. Avram R, Olgin JE, Kuhar P, Hughes JW, Marcus GM, Pletcher MJ et al. A digital biomarker of diabetes from smartphone-based vascular signals. Nat Med. 2020; 26(10): 1576–1582. doi:10. 1038/s41591-020-1010-5
30. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann Surg. 2022; 276(2): 363–369. doi:10.1097/SLA.0000000000004594.
31. Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A et al. Artificial Intelligence in Radiation Therapy. IEEE Trans Radiat Plasma Med Sci. 2022;6(2):158-181. doi: 10.1109/TRPMS.2021. 3107454.
32. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019;18:463–477. https://doi.org/10.1038/s41573-019-0024-5
33. Jiménez-Luna J, Grisoni F and Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell 2020(2):573–584. https://doi.org/10.1038/s42256-020-00236-4
34. Gerke S, Babic B, Evgenious T, Cohen IG. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digit Med. 2020;3:53. https://doi.org/10.1038/s41746-020-0262-2.
35. Liu Z, Chen X, Carter W, Moruf A, Komatsu TE, Pahwa S et al. AI-powered drug repurposing for developing COVID-19 treatments. In: Comprehensive Precision Medicine (First Edition). Kenneth S Ramos, Elsevier; 2024. p. 144-154, https://doi.org/10.1016/B978-0-12-824010-6.00005-8
36. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018;268(1):70-76. doi:10.1097/SLA.0000000000002693.
37. Amann J, Blasimme A, Vayena E, Frey D and Madai V on behalf of the Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 2020;20:310. https://doi.org/10.1186/s12911-020-01332-6
38. Antman EM, Loscalzo J. Precision medicine in cardiology. Nat Rev Cardiol. 2016;13(10):591-602. doi: 10.1038/nrcardio.2016.101.
39. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr Oncol 2021;28(3):1581-1607.
40. Aksu B, Paradkar A, de Matas M, Ozer O, Güneri T, York P. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech. 2012;13(4):1138-46.
41. Stehlik J, Schmalfuss C, Bozkurt B, Nativi-Nicolau J, Wohlfahrt P, Wegerich S et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization: The LINK-HF Multicenter Study, Circ Heart Fail 2020;13(3):e006513. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513
42. Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31.
43. Coravos A, Khozin S, Mandl KD. Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digit Med 2019;2(1):14. doi: 10.1038/s41746-019-0090-4.
44. Shickel B, Loftus TJ, Adhikari L, Ozrazgat-Baslanti T, Bihorac A, Rashidi P. DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning. Sci Rep 2019;9(1):1879. doi: 10.1038/s41598-019-38491-0.
45. Schinkel M, van der Poll T, Wiersinga WJ. Artificial Intelligence for Early Sepsis Detection: A Word of Caution. Am J Respir Crit Care Med 2023; 207(7):853-854. doi: 10.1164/rccm.202212-2284VP.
46. Ahsan MM, Luna SA, Siddique Z. Machine-learning-based disease diagnosis: a comprehensive review. Healthcare. 2022;10(3):541. https://doi.org/10.3390/healthcare10030541.
47. Li S, Zhao R, Zou H. Artificial intelligence for diabetic retinopathy. Chin Med J (Engl). 2021;135 (3):253–60. https://doi.org/10.1097/CM9.0000000000001816.
48. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation–related stroke. Circulation. 2021;143(13):1287–98. https://doi.org/10.1161/circulationaha.120.047829.
49. Becker J, Decker JA, Römmele C, Kahn M, Messmann H, Wehler M, et al. Artificial intelligence-based detection of pneumonia in chest radiographs. Diagnostics. 2022;12(6):1465. https://doi.org/10.3390/diagnostics12061465.
50. Davoudi A, Malhotra KR, Shickel B, Siegel S, Williams S, Ruppert M et al. The intelligent ICU pilot study: using artificial intelligence technology for autonomous patient monitoring. https://doi.org/10.48550/arXiv.1804.102
51. Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim HC, et al. Artificial Intelligence for Mental Health and Mental Illnesses: an overview. Curr Psychiatry Rep. 2019;21(11):116. https://doi.org/10.1007/s11920-019-1094-0.
52. Lee EE, Torous J, De Choudhury M, Depp CA, Graham SA, Kim HC, et al. Artificial Intelligence for Mental Health Care: clinical applications, barriers, facilitators, and Artificial Wisdom. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(9):856–64. https://doi.org/10.1016/j.bpsc.2021.02.001.
53. Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927. https://doi.org/10.1136/bmj.l6927.
54. Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial. JMIR Mental Health. 2017;4(2):e19
55. Maharaj M, Natarajan P, Fonseka RD, Khanna S, Choy WJ, Rooke K, Phan K, Mobbs RJ. The concept of recovery kinetics: an observational study of continuous post-operative monitoring in spine surgery. J Spine Surg. 2022 Jun;8(2):196-203.
56. Chalasani SH, Syed J, Ramesh M, Patil V, Pramod Kumar TM. Artificial intelligence in the field of pharmacy practice: A literature review. Explor Res Clin Soc Pharm. 2023 Oct 21;12:100346 . doi: 10.1016/j.rcsop.2023.100346.
57. Beam YuK, Kohane AL. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31. https://doi.org/10.1038/s41551-018-0305-z.
58. Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Aff (Millwood). 2014;33(7):1148 –54. https://doi.org/10.1377/hlthaff.2014.0352.
59. Ansari MS, Alok AK, Jain D, Rana S, Gupta S, Salwan R et al. Predictive Model Based on Health Data Analysis for Risk of Readmission in Disease-Specific Cohorts. Perspect Health Inf Manag 2021; 18(Spring):1j.
60. Radanliev P, De Roure D. Disease X vaccine production and supply chains: risk assessing healthcare systems operating with artificial intelligence and industry 4.0. Health Technol (Berl). 2023;13(1):11–5. https://doi.org/10.1007/s12553-022-00722-2.
61. Dasta J. Application of artificial intelligence to pharmacy and medicine. Hosp Pharm. 1992;27(4):312–5.
62. Topol EJ. High-performance medicine: the convergence of human and Artificial Intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.
63 Tyagi N, Bhushan B. Demystifying the Role of Natural Language Processing (NLP) in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions. Wirel Pers Commun. 2023;130(2):857-908. doi: 10.1007/ s11277-023-10312-8. Epub 2023 Mar 16.
64. Alowais SA, Alghamdi SS, Alsuhebany N, et Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023 Sep 22;23(1):689. doi: 10.1186/s12909-023-04698-z.
65. Curtis RG, Bartel B, Ferguson T, Blake HT, Northcott C, Virgara R, et al. Improving user experience of virtual Health Assistants: scoping review. J Med Internet Res. 2021;23(12):e31737. https://doi.org/10.2196/31737.
66. Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e0480 08. https://doi.org/10.1136/bmjopen-2020-048008.
67. Nelson KM, Chang ET, Zulman DM, Rubenstein LV, Kirkland FD, Fihn SD. Using Predictive Analytics to Guide Patient Care and Research in a National Health System. J Gen Intern Med. 2019;34(8):1379 –80. https://doi.org/10.1007/s11606-019-04961-4.
68. Predictive Analytics in Healthcare Reveal. https://www.revealbi.io/blog/predictive-analytics-in-healthcare. Accessed 7.18.2025.
69. Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med 2013;173:632–8.
70. Alfaras M, Soriano MC, Ortín S. A fast machine learning model for ECG-based Heartbeat classification and arrhythmia detection. Front Phys 2019;7. https://doi.org/10.3389/fphy.2019.00103.
71. Ghosh PK, Jain P, Wankhede S, Preethi M, Kannan MK. Virtual nursing Assistant. J Geog Sci. 2021;8:279–85. 20.18001.GSJ.2021.V8I3.21.36690.
72. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018;68(668):143–4. https://doi.org/10.3399/bjgp18X695213.
73. Crossnohere NL, Elsaid M, Paskett J, Bose-Brill S, Bridges JFP. Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks. J Med Internet Res. 2022; 24(8):e36823. https://doi.org/10.2196/36823.
74. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8. https://doi.org/10.1038/nature21056.
75. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42. https://doi.org/10.1093/annonc/mdy166.
76. Han SS, Park I, Eun Chang S, Lim W, Kim MS, Park GH, et al. Augmented Intelligence Dermatology: deep neural networks Empower Medical Professionals in diagnosing skin Cancer and Predicting Treatment Options for 134 skin Disorders. J Invest Dermatol. 2020;140(9):1753–61. https://doi.org/10.1016/j.jid.2020.01.019.
77. Davenport T, Kalakota R. The potential for artificial intelligence in Healthcare. Future Healthc J. 2019;6(2):94–8. https://doi.org/10.7861/futurehosp.6-2-94.
78. White Paper on Artificial Intelligence, European Commission. A European approach to excellence and trust. 2020. Feb 19, https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en. Accessed 6.20.2023.
79. Regulatory Science Strategy to 2025. European Medicines Agency. Released 2020. https://www.ema.europa.eu/en/about-us/how-we-work/regulatory-science-strategy#regulatory-science-strategy-to-2025-section. Accessed 6.20.2023.
80. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: users' guides to the medical literature. JAMA. 2019;322(18):1806–16. https://doi.org/10.1001/jama.2019.16489.2754798.
81. Rivera SC, Liu X, Chan A, Denniston AK, Calvert MJ, SPIRIT-AICONSORT-AI. Working Group Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. BMJ. 2020;370:m3210. https://doi.org/10.1136/bmj.m3210.
82. Artificial Intelligence and Machine Learning in Software as a Medical Device. US Food and Drug Administration. Released 2021. FDA website: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device. Accessed 6.20.2023.
83. Kim JW, Jones KL, D'Angelo E. How to prepare prospective psychiatrists in the era of Artificial Intelligence. Acad Psychiatry. 2019;43(3):337–9. https://doi.org/10.1007/s40596-019-01025-x.
84. Pharma News Intelligence. Available from: https://pharmanewsintel.com/. Accessed 6.20.2023.
85. Myszczynska MA, Ojamies PN, Lacoste AM, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative Diseases. Nat Reviews Neurol. 2020;16(8):440–56. https://doi.org/10.1038/s41582-020-0377-8.
86. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6.
87. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60. https://doi.org/10.1126/science.aaa8415.
88. Kim H-E, Kim HH, Han B-K, Kim KH, Han K, Nam H, et al. Changes in cancer detection and false-positive recall in mammography using Artificial Intelligence: a retrospective, Multireader Study. Lancet Digit Health. 2020;2(3). https://doi.org/10.1016/s2589-7500(20)30003-0.
89. Luxton DD. Artificial intelligence in psychological practice: current and future applications and implications. Prof Psychol Res Pract. 2014;45(5):332–9. https://doi.org/10.1037/a0034559.
90. Russell SJ. Artificial intelligence a modern approach. Pearson Education, Inc.; 2010.
91. Mijwil MM, Aggarwal K. A diagnostic testing for people with appendicitis using machine learning techniques. Multimed Tools Appl. 2022;81(5):7011–23. https://doi.org/10.1007/s11042-022-11939-8.
92. Williams AD, Andrews G. The effectiveness of internet cognitive behavioural therapy (iCBT) for depression in primary care: a quality assurance study. PLoS ONE. 2013;8(2):e57447.
93. VanLEHN K. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychol. 2011; 46(4):197–221. https://doi.org/10.1080/00461520.2011.611369.
94. Prochaska J, Vogel E, Chieng A, Kendra M, Baiocchi M, Pajarito S, Robinson A. A therapeutic Relational Agent for reducing problematic substance use (woebot): Development and Usability Study. J Med Internet Res. 2021;23(3):e24850.
95. Chew HSJ. The Use of Artificial Intelligence-Based conversational agents (Chatbots) for weight loss: scoping review and practical recommendations. JMIR Med Inform. 2022;10(4):e32578. https://doi.org/10.2196/32578.
96. Zhang J, Oh YJ, Lange P, Yu Z, Fukuoka Y. Artificial Intelligence Chatbot Behavior Change Model for Designing Artificial Intelligence Chatbots to promote physical activity and a healthy Diet: viewpoint. J Med Internet Res. 2020;22(9):e22845. https://doi.org/10.2196/22845.
97. Wang H, Zhang Z, Ip M, Lau J. T.F. Social media–based conversational agents for health management and interventions. J Med Internet Res. 2018;20(8):e261. https://doi.org/10.2196/jmir.9275.
98. Bombard Y, Baker GR, Orlando E, Fancott C, Bhatia P, Casalino S, et al. Engaging patients to improve quality of care: a systematic review. Implement Sci. 2018;13(1):98. https://doi.org/10.1186/s13012-018-0784-z.
99. Wong CK, Yeung DY, Ho HC, Tse KP, Lam CY. Chinese older adults' internet use for health information. J Appl Gerontol. 2014;33(3):316–35. https://doi.org/10.1177/0733464812463430.
100. Aggarwal A, Tam CC, Wu D, Li X, Qiao S. Artificial Intelligence-Based chatbots for promoting health behavioral changes: systematic review. J Med Internet Res. 2023;25:e40789. https://doi.org/10.2196/40789.
101. Görtz M, Baumgärtner K, Schmid T, Muschko M, Woessner P, Gerlach A, et al. An artificial intelligence-based chatbot for prostate cancer education: design and patient evaluation study. Digit Health. 2023;9:20552076231173304. https://doi.org/10.1177/20552076231173304.
102. Nakhleh A, Spitzer S, Shehadeh N. ChatGPT's response to the diabetes knowledge questionnaire: implications for Diabetes Education. Diabetes Technol Ther. 2023 Apr;16. https://doi.org/10.1089/dia.2023.0134.
103. Kirchner GJ, Kim RY, Weddle JB, Bible JE. Can Artificial Intelligence improve the readability of Patient Education Materials? Clin Orthop Relat Res 2023 Apr 28. https://doi.org/10.1097/CORR.0000000000002668.
104. Burgess M. The NHS is trialling an AI chatbot to answer your medical questions. Wired. 2017. Jan 5, http://www.wired.co.uk/article/babylon-nhs-chatbot-app. Accessed 20 June 2023.
105. Pavel Jiřík. Inspiring Applications of Digital Virtual Assistants in Healthcare. July 22., 2022. https://www.phonexia.com/blog/inspiring-applications-of-digital-virtual-assistants-in-healthcare/. Accessed 20 June 2023.
106. Suleimenov IE, Vitulyova YS, Bakirov AS, Gabrielyan OA. Artificial Intelligence:what is it? Proc 2020 6th Int Conf Comput Technol Appl. 2020;22–5. https://doi.org/10.1145/3397125.3397141.
107. McCorduck P, Cfe C. Machines who think: a personal inquiry into the history and prospects of Artificial Intelligence. AK Peters; 2004.46. Insel TR. Digital Phenotyping: Technology for a New Science of Behavior. JAMA. 2017;318(13):1215-1216. doi: 10.1001/jama.2017.11295.