Recognizing Specialized Reference Centres for Haemoglobin Disorders and Promoting their Role in Developing Networks

Main Article Content

Angastiniotis M, MD, DCH Farmakis D, MD, PhD Eleftheriou P, MD, MRCP, FRCPath Piga A, MD, PhD Pelides K, MEd, MSc Eleftheriou A, PhD

Abstract

Haemoglobin disorders are genetic conditions which require complex and multidisciplinary services, challenging healthcare services in many countries. The objective is to provide optimum care to all patients, equally, wherever they may live in the world. The need for specialized centres was recognized early in haemogobinopathy management, as dedicated clinical services can help to reduce morbidity and prolong survival. Reference treatment centres follow guidelines and apply standards with evidence of good outcomes, including measures such as survival, morbidity and quality of life. Recognition is verified by inspection and data collection and is made official by accreditation which is acceptable by the administrative authorities. The Thalassaemia International Federation (TIF), as part of its mission to promote, in as many countries as possible quality care, has initiated a program to recognize collaborating centres and promote specialization, but also support to peripheral centres which may not have the experience or the means to serve patients with the same standards. This report describes principles and means with which these goals are promoted. At the time of writing 9 centres in 4 countries (in South Asia, Middle East and Europe), have volunteered and have been visited by teams of reviewers. Of these 7 have been recognized as TIF collaborating centres. These centres altogether serve 5750 patients with all haemoglobinopathies (65% with thalassaemia and 35% with sickle cell syndromes). Two more centres are currently under review.

Article Details

How to Cite
M, Angastiniotis et al. Recognizing Specialized Reference Centres for Haemoglobin Disorders and Promoting their Role in Developing Networks. Medical Research Archives, [S.l.], v. 13, n. 9, sep. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6927>. Date accessed: 05 dec. 2025. doi: https://doi.org/10.18103/mra.v13i9.6927.
Section
Research Articles

References

1. Goyal R, Singhal M, Jialal I. Type 2 Diabetes. [Updated 2023 Jun 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls.; 2023. https://www.ncbi.nlm.nih.gov/books/NBK513253/

2. Kharroubi AT. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015;6(6):850. doi:10.4239/wjd.v6.i6.850

3. Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Front Public Health. 2025;13: 1515797. doi:10.3389/fpubh.2025.1515797

4. Weisman A, Fazli GS, Johns A, Booth GL. Evolving Trends in the Epidemiology, Risk Factors, and Prevention of Type 2 Diabetes: A Review. Can J Cardiol. 2018;34(5):552-564. doi:10.1016/j.cjca.2 018.03.002

5. Anjom-Shoae J, Feinle-Bisset C, Horowitz M. Impacts of dietary animal and plant protein on weight and glycemic control in health, obesity and type 2 diabetes: friend or foe? Front Endocrinol (Lausanne). 2024;15:1412182. doi:10.3389/fend o.2024.1412182

6. Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol. 2020;104:208-218. doi:10.1016/j.tifs.2020.08.002

7. Wang X, Son M, Meram C, Wu J. Mechanism and potential of egg consumption and egg bioactive components on type-2 diabetes. Nutrients. 2019; 11(2):357. doi:10.3390/nu11020357

8. Plat J, Severins N, Mensink RP. Improvement of pulse wave velocity and metabolic cardiovascular risk parameters through egg protein hydrolysate intake: A randomized trial in overweight or obese subjects with impaired glucose tolerance or type 2 diabetes. J Funct Foods. 2019;52:418-423. doi:10.1016/j.jff.2018.11.020

9. Nijssen KMR, Joris PJ, Mensink RP, Plat J. Longer-term effects of the egg-protein hydrolysate NWT-03 on arterial stiffness and cardiometabolic risk markers in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled, crossover trial. Eur J Clin Nutr. 2023;77(10):982-988. doi:10.1038/s41430-023-01305-8

10. Son M, Wu J. Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-α (TNF-α) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells. Eur J Nutr. 2019;58(5):1961-1969. doi:10.1007/s00394-018-1753-7

11. Son M, Chan CB, Wu J. Egg White Ovotransferrin-Derived ACE Inhibitory Peptide Ameliorates Angiotensin II-Stimulated Insulin Resistance in Skeletal Muscle Cells. Mol Nutr Food Res. 2018;62 (4):1700602. doi:10.1002/mnfr.201700602

12. Wang Y, Landheer S, van Gilst WH, et al. Attenuation of Renovascular Damage in Zucker Diabetic Fatty Rat by NWT-03, an Egg Protein Hydrolysate with ACE- and DPP4-Inhibitory Activity. PLoS One. 2012;7(10):e46781. doi:10.1371/journa l.pone.0046781

13. Jahandideh F, De Campos Zani SC, Son M, et al. Egg white hydrolysate enhances insulin sensitivity in high-fat diet-induced insulin-resistant rats via Akt activation. Br J Nutr. 2019;122(1):14-24. doi:10.101 7/S0007114519000837

14. Garcés-Rimón M, González C, Vera G, et al. Pepsin egg white hydrolysate improves glucose metabolism complications related to metabolic syndrome in zucker fatty rats. Nutrients. 2018;10(4): 441. doi:10.3390/nu10040441

15. Ochiai M, Azuma Y. Egg White Hydrolysate Improves Glucose Tolerance in Type-2 Diabetic NSY Mice. J Nutr Sci Vitaminol. 2017;63:422-429. doi:10.3177/jnsv.63.422

16. Moreno-Fernández S, Garcés-Rimón M, González C, et al. Pepsin egg white hydrolysate ameliorates metabolic syndrome in high-fat/high-dextrose fed rats. Food Funct. 2018;9:78-86. doi:10.1039/c7fo01280b

17. Elhadad N, de Campos Zani SC, Chan CB, Wu J. Ovalbumin Hydrolysates Enhance Skeletal Muscle Insulin-Dependent Signaling Pathway in High-Fat Diet-Fed Mice. J Agric Food Chem. 2024; 72(27):15248-15255. doi:10.1021/acs.jafc.4c01008

18. de Campos Zani SC, Wang R, Veida-Silva H, et al. An Egg White-Derived Peptide Enhances Systemic Insulin Sensitivity and Modulates Markers of Non-Alcoholic Fatty Liver Disease in Obese, Insulin Resistant Mice. Metabolites. 2023;13(2):174. doi:10.3390/metabo13020174

19. de Campos Zani SC, Son M, Bhullar KS, Chan CB, Wu J. IRW (Isoleucine–Arginine–Tryptophan) Improves Glucose Tolerance in High Fat Diet Fed C57BL/6 Mice via Activation of Insulin Signaling and AMPK Pathways in Skeletal Muscle. Biomedicines. 2022;10(6):1235. doi:10.3390/biomedicines10061235

20. Liu Z, Ding S, Jiang H, Fang J. Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota. Int J Mol Sci. 2022;23(19). doi:10.3390/ijms231911227

21. Cao X, Chen L, Lu K, et al. Egg white-derived peptides reduced blood glucose in high-fat-diet and low-dose streptozotocin-induced type 2 diabetic mice via regulating the hepatic gluconeogenic signaling and metabolic profile. Food Funct. 2024; 15(13):7003-7016. doi:10.1039/d4fo00725e

22. Ochiai M, Kuroda T, Matsuo T. Increased muscular triglyceride content and hyperglycemia in Goto-Kakizaki rat are decreased by egg white hydrolysate. Int J Food Sci Nutr. 2014;65(4):495-501. doi:10.3109/09637486.2013.879288

23. Ochiai M, Matsuo T. Effect of egg white and its hydrolysate on stearoyl-CoA desaturase index and fat accumulation in rat tissues. Int J Food Sci Nutr. 2014;65(8):948-952. doi:10.3109/09637486.2014.9 37800

24. Liao W, Jahandideh F, Fan H, Son M, Wu J. Egg Protein-Derived Bioactive Peptides: Preparation, Efficacy, and Absorption. Adv Food Nutr Res. 2018;85:1-58. doi:10.1016/bs.afnr.2018.02.001

25. Bao X, Wang Z, Wu J. Bioactives of egg white proteins and peptides. In: Handbook of Egg Science and Technology. CRC Press; 2023:411-442. doi:10.1201/9781003254430-29

26. De Campos Zani SC, Wu J, Chan CB. Egg and soy-derived peptides and hydrolysates: A review of their physiological actions against diabetes and obesity. Nutrients. 2018;10(5):549. doi:10.3390/nu 10050549

27. Wu T, Wang W, Hai N, et al. Egg white peptides suppress ghrelin secretion from the stomach by activating the mTOR signaling pathway in rats. Food Res Intl. 2025;216:116710. doi:10.1016/j.foodres.2 025.116710

28. DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1: 15019. doi:10.1038/nrdp.2015.19

29. Veit M, van Asten R, Olie A, Prinz P. The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: a narrative review. Eur J Clin Nutr. 2022;76(11):1497-1501. doi:10.1038/s41430-022-01114-5

30. de Campos Zani SC, Berg E, Jiang X, et al. IRW improves diet-induced non-alcoholic fatty liver disease by reducing steatosis associated with increased capacity for oxidative phosphorylation. J Funct Foods. 2024;112:105976. doi:10.1016/j.jff.2 023.105976

31. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22. doi:10.1172/JCI77812

32. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Assessing glucose homeostasis in rodent models. J Endocrinol. 2014; 222(3):13-25. doi:10.1530/JOE-14-0182

33. Jagannathan R, Neves JS, Dorcely B, et al. The oral glucose tolerance test: 100 years later. Diabetes Metab Syndr Obes. 2020;13:3787-3805. doi:10.214 7/DMSO.S246062

34. Moro C, Magnan C. Revisited guidelines for metabolic tolerance tests in mice. Lab Anim (NY). 2025;54:16-23. doi:10.1038/s41684-024-01473-5

35. Yu Z, Yin Y, Zhao W, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem. 2011;129(4):1376-1382. doi:10.1016/j.foodchem.2011.05.067

36. Garcés-Rimón M, López-Expósito I, López-Fandiño R, Miguel M. Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. Eur Food Res Technol. 2016;242(1):61-69. doi:10.1007/s00217-015-2518-7

37. Pan G, Lu Y, Wei Z, Li Y, Li L, Pan X. A review on the in vitro and in vivo screening of α-glucosidase inhibitors. Heliyon. 2024;10(18):e37467. doi:10.101 6/j.heliyon.2024.e37467

38. Majumder K, Liang G, Chen Y, Guan L, Davidge ST, Wu J. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59(9):1735-1744. doi:10.1002/mn fr.201500050

39. Liao W, Bhullar KS, Chakrabarti S, Davidge ST, Wu J. Egg White-Derived Tripeptide IRW (Ile-Arg-Trp) is an Activator of Angiotensin Converting Enzyme 2. J Agric Food Chem. 2018;66(43):11330-11336. doi:10.1021/acs.jafc.8b03501

40. Bindom SM, Lazartigues E. The sweeter side of ACE2: Physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2008;302(2):193. doi:10.101 6/J.MCE.2008.09.020

41. Zatterale F, Longo M, Naderi J, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020;10:1607. doi:10.3389/fphys.2019.01607

42. Look AHEAD Research Group WR. Long-term Effects of a Lifestyle Intervention on Weight and Cardiovascular Risk Factors in Individuals With Type 2 Diabetes Mellitus Four-Year Results of the Look AHEAD Trial. Arch Intern Med. 2010;170:1566-1575. doi:10.1001/archinternmed.2010.334

43. Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol. 2020;2020:1385138. doi:10.1155/2 020/1385138

44. Oh KJ, Han HS, Kim MJ, Koo SH. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 2013;46 (12):567-574. doi:10.5483/BMBRep.2013.46.12.248

45. Jaiswal N, Gavin MG, Quinn WJ, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019; 28:1-13. doi:10.1016/j.molmet.2019.08.001

46. Islam MS, Loots DT. Experimental rodent models of type 2 diabetes: A review. Methods Find Exp Clin Pharmacol. 2009;31(4):249-261. doi:10.1358/mf.2 009.31.4.1362513

47. Hahn MK, Giacca A, Pereira S. In vivo techniques for assessment of insulin sensitivity and glucose metabolism. J Endocrinol. 2024;260(3): e230308. doi:10.1530/JOE-23-0308

48. Jackson SJ, Andrews N, Ball D, et al. Does age matter? The impact of rodent age on study outcomes. Lab Anim. 2017;51(2):160-169. doi:10.1177/00236 77216653984

49. Richard C, Cristall L, Fleming E, et al. Impact of Egg Consumption on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes and at Risk for Developing Diabetes: A Systematic Review of Randomized Nutritional Intervention Studies. Can J Diabetes. 2017;41(4):453-463. doi:10.1016/j.jcj d.2016.12.002

50. Ballmer-Weber BK, Brockow K, Fiocchi A, et al. Hydrolysed egg displays strong decrease in allergenicity and is well tolerated by egg-allergic patients. Allergy Eur J Allergy Clin Immunol. 2016; 71(5):728-732. doi:10.1111/all.12852

51. Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? the challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes. 2014;4(9):e135. doi:10.1038/nutd.2 014.30

52. Li Q, Liao W, Fan H, Wu J. Optimization and Scale-Up Preparation of Egg White Hydrolysate with Angiotensin I Converting Enzyme Inhibitory Activity. J Food Sci. 2018;83(6):1762-1768. doi:10.1111/1750-3841.14158

53. Sun X, Acquah C, Aluko RE, Udenigwe CC. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J Funct Foods. 2020;64. doi:10.101 6/j.jff.2019.103680