Novel Strategies for Improved Treatment of O6-Methylguanine-DNA Methyltransferase Promoter-Methylated Glioma
Main Article Content
Abstract
Adult diffuse gliomas are primary brain tumors notorious for leading to devastating neurologic consequences from both tumor progression and therapeutic interventions. The arsenal of current established treatments primarily includes surgery, radiotherapy, and DNA alkylating chemotherapy agents. Unfortunately, even with aggressive treatments, long-term cure is typically not attainable, except in certain cases of low-grade gliomas amenable to complete surgical resection. Grade 4 glioblastoma (GBM) represents the most aggressive and most common type of glioma in adults, is often resistant to current therapies, and is associated with a median survival of approximately 15 months. While biomarker-based therapies for gliomas are limited, O6-methylguanine-DNA methyltransferase (MGMT) is one well-established prognostic marker in GBM and is associated with improved response to the alkylating agent temozolomide (TMZ). Methylation of the MGMT promoter leading to loss of MGMT expression occurs in approximately half of GBMs and 70-80% of anaplastic and low-grade gliomas. While MGMT promoter-methylated gliomas are responsive to TMZ, a characteristic resistance mechanism of mismatch repair loss often emerges, resulting in recurrent drug-resistant disease. In prior work, we identified a new TMZ derivative “KL-50” which overcomes resistance to TMZ driven by loss of mismatch repair in preclinical glioma models. KL-50 functions via a novel DNA-modifying mechanism involving evolution of a primary alkyl lesion to a DNA interstrand crosslink specifically in the absence of MGMT. Research is ongoing to establish this new class of agents as a potential improved therapy in human gliomas. In this review, we provide an overview of the history and evolution of alkylator use in GBM, discuss the mechanisms and pitfalls of current therapies including toxicity or susceptibility to resistance mechanisms, and present the potential of a new wave of DNA modifiers to improve outcomes in gliomas.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Poon MTC, Sudlow CLM, Figueroa JD, Brennan PM. Longer-term (>/= 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis. Sci Rep. Jul 15 2020;10(1):11622. doi:10.1038/s41598-020-68011-4
3. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. Mar 10 2005;352(10):987-96. doi:10.1056/NEJMoa043330
4. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. Mar 10 2005;352(10):997-1003. doi:10.1056/NEJMoa043331
5. Mair MJ, Geurts M, van den Bent MJ, Berghoff AS. A basic review on systemic treatment options in WHO grade II-III gliomas. Cancer Treat Rev. Jan 2021;92:102124. doi:10.1016/j.ctrv.2020.102124
6. Weller M, van den Bent M, Tonn JC, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. Jun 2017;18(6):e315-e329. doi:10.1016/S1470-2045(17)30194-8
7. Strobel H, Baisch T, Fitzel R, et al. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines. Sep 9 2019;7(3)doi:10.3390/biomedicines7030069
8. Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med. Nov 30 2023;12(23)doi:10.3390/jcm12237442
9. Leelatian N, Hong CS, Bindra RS. The Role of Mismatch Repair in Glioblastoma Multiforme Treatment Response and Resistance. Neurosurg Clin N Am. Apr 2021;32(2):171-180. doi:10.1016/j.nec.2020.12.009
10. Cahill DP, Levine KK, Betensky RA, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res. Apr 1 2007;13(7):2038-45. doi:10.1158/1078-0432.CCR-06-2149
11. Shinsato Y, Furukawa T, Yunoue S, et al. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget. Dec 2013;4(12):2261-70. doi:10.18632/oncotarget.1302
12. Yip S, Miao J, Cahill DP, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. Jul 15 2009;15(14):4622-9. doi:10.1158/1078-0432.CCR-08-3012
13. Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. Apr 2020;580(7804):517-523. doi:10.1038/s41586-020-2209-9
14. McCord M, Sears T, Wang W, et al. The novel DNA cross-linking agent KL-50 is active against patient-derived models of new and recurrent post-temozolomide mismatch repair-deficient glioblastoma. Neuro Oncol. Mar 7 2025;27(3):644-651. doi:10.1093/neuonc/noae257
15. Yu Y, Villanueva-Meyer J, Grimmer MR, et al. Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro Oncol. Nov 2 2021;23(11):1872-1884. doi:10.1093/neuonc/noab081
16. Fazzari FGT, Rose F, Pauls M, et al. The current landscape of systemic therapy for recurrent glioblastoma: A systematic review of randomized-controlled trials. Crit Rev Oncol Hematol. Jan 2022;169:103540. doi:10.1016/j.critrevonc.2021.103540
17. Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. Dec 4 1980;303(23):1323-9. doi:10.1056/NEJM198012043032303
18. Weller M, Le Rhun E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. Jul 2020;87:102029. doi:10.1016/j.ctrv.2020.102029
19. Medical Research Council Brain Tumor Working P. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol. Jan 15 2001;19(2):509-18. doi:10.1200/JCO.2001.19.2.509
20. Brada M, Stenning S, Gabe R, et al. Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. J Clin Oncol. Oct 20 2010;28(30):4601-8. doi:10.1200/JCO.2009.27.1932
21. Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. Aug 2014;15(9):943-53. doi:10.1016/S1470-2045(14)70314-6
22. Wick W, Gorlia T, Bendszus M, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. Nov 16 2017;377(20):1954-1963. doi:10.1056/NEJMoa1707358
23. Stevens MF, Hickman JA, Langdon SP, et al. Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res. Nov 15 1987;47(22):5846-52.
24. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. Jan 12 2012;12(2):104-20. doi:10.1038/nrc3185
25. Roos WP, Batista LF, Naumann SC, et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. Jan 11 2007;26(2):186-97. doi:10.1038/sj.onc.1209785
26. Yung WK, Albright RE, Olson J, et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. Sep 2000;83(5):588-93. doi:10.1054/bjoc.2000.1316
27. O'Reilly SM, Newlands ES, Glaser MG, et al. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer. 1993;29A(7):940-2. doi:10.1016/s0959-8049(05)80198-4
28. Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. Jun 1 2004;10(11):3728-36. doi:10.1158/1078-0432.CCR-03-0807
29. Patel M, McCully C, Godwin K, Balis FM. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol. Feb 2003;61(3):203-7. doi:10.1023/a:1022592913323
30. Everhard S, Tost J, El Abdalaoui H, et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol. Aug 2009;11(4):348-56. doi:10.1215/15228517-2009-001
31. Costello JF, Futscher BW, Kroes RA, Pieper RO. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol. Oct 1994;14(10):6515-21. doi:10.1128/mcb.14.10.6515-6521.1994
32. Pieper RO, Patel S, Ting SA, Futscher BW, Costello JF. Methylation of CpG island transcription factor binding sites is unnecessary for aberrant silencing of the human MGMT gene. J Biol Chem. Jun 7 1996;271(23):13916-24. doi:10.1074/jbc.271.23.13916
33. Weller M, Felsberg J, Hartmann C, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. Dec 1 2009;27(34):5743-50. doi:10.1200/JCO.2009.23.0805
34. Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N Engl J Med. Mar 16 2017;376(11):1027-1037. doi:10.1056/NEJMoa1611977
35. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. May 2009;10(5):459-66. doi:10.1016/S1470-2045(09)70025-7
36. Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. Mar 2021;18(3):170-186. doi:10.1038/s41571-020-00447-z
37. Wick W, Platten M, Meisner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. Jul 2012;13(7):707-15. doi:10.1016/S1470-2045(12)70164-X
38. Mulholland S, Pearson DM, Hamoudi RA, et al. MGMT CpG island is invariably methylated in adult astrocytic and oligodendroglial tumors with IDH1 or IDH2 mutations. Int J Cancer. Sep 1 2012;131(5):1104-13. doi:10.1002/ijc.26499
39. Fleming JL, Pugh SL, Fisher BJ, et al. Long-Term Report of a Comprehensive Molecular and Genomic Analysis in NRG Oncology/RTOG 0424: A Phase II Study of Radiation and Temozolomide in High-Risk Grade II Glioma. JCO Precis Oncol. 2021;5doi:10.1200/PO.21.00112
40. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. Dec 10 2009;462(7274):739-44. doi:10.1038/nature08617
41. Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. Jan 18 2011;19(1):17-30. doi:10.1016/j.ccr.2010.12.014
42. Chowdhury R, Yeoh KK, Tian YM, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. May 2011;12(5):463-9. doi:10.1038/embor.2011.43
43. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. Feb 15 2012;483(7390):479-83. doi:10.1038/nature10866
44. Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. May 18 2010;17(5):510-22. doi:10.1016/j.ccr.2010.03.017
45. Fisher BJ, Pugh SL, Macdonald DR, et al. Phase 2 Study of a Temozolomide-Based Chemoradiation Therapy Regimen for High-Risk, Low-Grade Gliomas: Long-Term Results of Radiation Therapy Oncology Group 0424. Int J Radiat Oncol Biol Phys. Jul 15 2020;107(4):720-725. doi:10.1016/j.ijrobp.2020.03.027
46. van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol. Jun 2021;22(6):813-823. doi:10.1016/S1470-2045(21)00090-5
47. Jaeckle KA, Ballman KV, van den Bent M, et al. CODEL: phase III study of RT, RT + TMZ, or TMZ for newly diagnosed 1p/19q codeleted oligodendroglioma. Analysis from the initial study design. Neuro Oncol. Mar 25 2021;23(3):457-467. doi:10.1093/neuonc/noaa168
48. Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res. Jan 1998;4(1):1-6.
49. Hunter C, Smith R, Cahill DP, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. Apr 15 2006;66(8):3987-91. doi:10.1158/0008-5472.CAN-06-0127
50. Felsberg J, Thon N, Eigenbrod S, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. Aug 1 2011;129(3):659-70. doi:10.1002/ijc.26083
51. Gestrich CK, Jajosky AN, Elliott R, et al. Molecular Profiling of Pediatric and Adult Glioblastoma. Am J Clin Pathol. Mar 15 2021;155(4):606-614. doi:10.1093/ajcp/aqaa172
52. Indraccolo S, Lombardi G, Fassan M, et al. Genetic, Epigenetic, and Immunologic Profiling of MMR-Deficient Relapsed Glioblastoma. Clin Cancer Res. Mar 15 2019;25(6):1828-1837. doi:10.1158/1078-0432.CCR-18-1892
53. Barthel FP, Johnson KC, Varn FS, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature. Dec 2019;576(7785):112-120. doi:10.1038/s41586-019-1775-1
54. Negm L, Chung J, Nobre L, et al. The landscape of primary mismatch repair deficient gliomas in children, adolescents, and young adults: a multi-cohort study. Lancet Oncol. Jan 2025;26(1):123-135. doi:10.1016/S1470-2045(24)00640-5
55. Das A, Sudhaman S, Morgenstern D, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. Jan 2022;28(1):125-135. doi:10.1038/s41591-021-01581-6
56. Cohen KJ, Pollack IF, Zhou T, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol. Mar 2011;13(3):317-23. doi:10.1093/neuonc/noq191
57. Jakacki RI, Cohen KJ, Buxton A, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro Oncol. Oct 2016;18(10):1442-50. doi:10.1093/neuonc/now038
58. Lulla RR, Buxton A, Krailo MD, et al. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children's Oncology Group Study. Neurooncol Adv. Jan-Dec 2024;6(1):vdae035. doi:10.1093/noajnl/vdae035
59. Haase S, Banerjee K, Mujeeb AA, et al. H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. J Clin Invest. Nov 15 2022;132(22)doi:10.1172/JCI154229
60. Eckert A, Kloor M, Giersch A, et al. Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol. Apr 2007;17(2):146-50. doi:10.1111/j.1750-3639.2007.00049.x
61. Morano F, Raimondi A, Pagani F, et al. Temozolomide Followed by Combination With Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O(6)-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA Trial. J Clin Oncol. May 10 2022;40(14):1562-1573. doi:10.1200/JCO.21.02583
62. Germano G, Lamba S, Rospo G, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. Dec 7 2017;552(7683):116-120. doi:10.1038/nature24673
63. Ercan AB, Aronson M, Fernandez NR, et al. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study. Lancet Oncol. May 2024;25(5):668-682. doi:10.1016/S1470-2045(24)00026-3
64. Crisafulli G, Sartore-Bianchi A, Lazzari L, et al. Temozolomide Treatment Alters Mismatch Repair and Boosts Mutational Burden in Tumor and Blood of Colorectal Cancer Patients. Cancer Discov. Jul 6 2022;12(7):1656-1675. doi:10.1158/2159-8290.CD-21-1434
65. Chung J, Maruvka YE, Sudhaman S, et al. DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discov. May 2021;11(5):1176-1191. doi:10.1158/2159-8290.CD-20-0790
66. Westcott PMK, Muyas F, Hauck H, et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat Genet. Oct 2023;55(10):1686-1695. doi:10.1038/s41588-023-01499-4
67. Bhatt D, Sundaram RK, Lopez KSL, Lee T, Gueble SE, Vasquez JC. Development of Syngeneic Murine Glioma Models with Somatic Mismatch Repair Deficiency to Study Therapeutic Responses to Alkylating Agents and Immunotherapy. Curr Protoc. Feb 2025;5(2):e70097. doi:10.1002/cpz1.70097
68. Wedge SR, Porteus JK, May BL, Newlands ES. Potentiation of temozolomide and BCNU cytotoxicity by O(6)-benzylguanine: a comparative study in vitro. Br J Cancer. Feb 1996;73(4):482-90. doi:10.1038/bjc.1996.85
69. Dolan ME, Moschel RC, Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. Jul 1990;87(14):5368-72. doi:10.1073/pnas.87.14.5368
70. Lee SM, Thatcher N, Crowther D, Margison GP. Inactivation of O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells by temozolomide. Br J Cancer. Mar 1994;69(3):452-6. doi:10.1038/bjc.1994.82
71. Quinn JA, Desjardins A, Weingart J, et al. Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol. Oct 1 2005;23(28):7178-87. doi:10.1200/JCO.2005.06.502
72. Ranson M, Middleton MR, Bridgewater J, et al. Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. Mar 1 2006;12(5):1577-84. doi:10.1158/1078-0432.CCR-05-2198
73. Quinn JA, Jiang SX, Reardon DA, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. Mar 10 2009;27(8):1262-7. doi:10.1200/JCO.2008.18.8417
74. Ranson M, Hersey P, Thompson D, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. J Clin Oncol. Jun 20 2007;25(18):2540-5. doi:10.1200/JCO.2007.10.8217
75. Khan OA, Ranson M, Michael M, et al. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br J Cancer. May 20 2008;98(10):1614-8. doi:10.1038/sj.bjc.6604366
76. Ramalho MJ, Loureiro JA, Coelho MAN, Pereira MC. Factorial Design as a Tool for the Optimization of PLGA Nanoparticles for the Co-Delivery of Temozolomide and O6-Benzylguanine. Pharmaceutics. Aug 10 2019;11(8) doi:10.3390/pharmaceutics11080401
77. Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, Rao BSS. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech. Nov 2024;14(11):275. doi:10.1007/s13205-024-04123-2
78. Liang S, Xu H, Ye BC. Membrane-Decorated Exosomes for Combination Drug Delivery and Improved Glioma Therapy. Langmuir. Jan 11 2022;38(1):299-308. doi:10.1021/acs.langmuir.1c02500
79. Zhang J, Stevens MF, Hummersone M, Madhusudan S, Laughton CA, Bradshaw TD. Certain imidazotetrazines escape O6-methylguanine-DNA methyltransferase and mismatch repair. Oncology. 2011;80(3-4):195-207. doi:10.1159/000327837
80. Zhang J, Hummersone M, Matthews CS, Stevens MF, Bradshaw TD. N3-substituted temozolomide analogs overcome methylguanine-DNA methyltransferase and mismatch repair precipitating apoptotic and autophagic cancer cell death. Oncology. 2015;88(1):28-48. doi:10.1159/000366131
81. Cousin D, Hummersone MG, Bradshaw TD, et al. Synthesis and growth-inhibitory activities of imidazo[5,1-d]-1,2,3,5-tetrazine-8-carboxamides related to the anti-tumour drug temozolomide, with appended silicon, benzyl and heteromethyl groups at the 3-position. Medchemcomm. Mar 1 2018;9(3):545-553. doi:10.1039/c7md00554g
82. Summers HS, Lewis W, Williams HEL, Bradshaw TD, Moody CJ, Stevens MFG. Discovery of new imidazotetrazinones with potential to overcome tumor resistance. Eur J Med Chem. Sep 5 2023;257:115507. doi:10.1016/j.ejmech.2023.115507
83. Svec RL, McKee SA, Berry MR, Kelly AM, Fan TM, Hergenrother PJ. Novel Imidazotetrazine Evades Known Resistance Mechanisms and Is Effective against Temozolomide-Resistant Brain Cancer in Cell Culture. ACS Chem Biol. Feb 18 2022;17(2):299-313. doi:10.1021/acschembio.2c00022
84. Yang Z, Wei D, Dai X, et al. C8-Substituted Imidazotetrazine Analogs Overcome Temozolomide Resistance by Inducing DNA Adducts and DNA Damage. Front Oncol. 2019;9:485. doi:10.3389/fonc.2019.00485
85. Svec RL, Furiassi L, Skibinski CG, Fan TM, Riggins GJ, Hergenrother PJ. Tunable Stability of Imidazotetrazines Leads to a Potent Compound for Glioblastoma. ACS Chem Biol. Nov 16 2018;13(11):3206-3216. doi:10.1021/acschembio.8b00864
86. Lin K, Gueble SE, Sundaram RK, Huseman ED, Bindra RS, Herzon SB. Mechanism-based design of agents that selectively target drug-resistant glioma. Science. Jul 29 2022;377(6605):502-511. doi:10.1126/science.abn7570
87. Tong WP, Kirk MC, Ludlum DB. Mechanism of action of the nitrosoureas--V. Formation of O6-(2-fluoroethyl)guanine and its probable role in the crosslinking of deoxyribonucleic acid. Biochem Pharmacol. Jul 1 1983;32(13):2011-5. doi:10.1016/0006-2952(83)90420-3
88. Pegg AE, Scicchitano D, Dolan ME. Comparison of the rates of repair of O6-alkylguanines in DNA by rat liver and bacterial O6-alkylguanine-DNA alkyltransferase. Cancer Res. Sep 1984;44(9):3806-11.
89. Parker S, Kirk MC, Ludlum DB. Synthesis and characterization of O6-(2-chloroethyl)guanine: a putative intermediate in the cytotoxic reaction of chloroethylnitrosoureas with DNA. Biochem Biophys Res Commun. Nov 13 1987;148(3):1124-8. doi:10.1016/s0006-291x(87)80249-8
90. Huseman ED, Lo A, Fedorova O, et al. Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers. J Am Chem Soc. Jul 10 2024;146(27):18241-18252. doi:10.1021/jacs.3c06483
91. Wang P, Wu J, Ma S, et al. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Rep. Dec 22 2015;13(11):2353-2361. doi:10.1016/j.celrep.2015.11.029
92. Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. Feb 1 2017;9(375)doi:10.1126/scitranslmed.aal2463
93. Sulkowski PL, Oeck S, Dow J, et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. Jun 2020;582(7813):586-591. doi:10.1038/s41586-020-2363-0
94. Schvartzman JM, Forsyth G, Walch H, et al. Oncogenic IDH mutations increase heterochromatin-related replication stress without impacting homologous recombination. Mol Cell. Jul 6 2023;83(13):2347-2356 e8. doi:10.1016/j.molcel.2023.05.026
95. Herrlinger U, Tzaridis T, Mack F, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. Feb 16 2019;393(10172):678-688. doi:10.1016/S0140-6736(18)31791-4
96. A Phase III Trial of Lomustine-Temozolomide Combination Therapy Versus Standard Temozolomide in Patients With Methylated MGMT Promoter Glioblastoma. National Library of Medicine (US). https://clinicaltrials.gov/study/NCT05095376