Inflammatory Breast Cancer: What’s in a Name?

Main Article Content

Hilary C. Aquino Kenneth L. van Golen

Abstract

One of the most unique and highly aggressive types of cancer is known to be Inflammatory Breast Cancer. IBC is a distinct locally advanced breast cancer with a highly virulent course and extremely low 5- and 10-year survival rates. Although Inflammatory Breast Cancer only accounts for 1-3% of breast cancers it is estimated to account for 10% of breast cancer deaths annually in the United States. The accuracy of diagnosis and classification of this unique cancer is a major concern within patient and medical communities. This in turn has led to a strong advocacy movement. Historically, Inflammatory Breast Cancer was thought to be many different diseases but 100 years ago was defined as a unified disease. Over the past three decades several molecular studies have identified unique gene and protein signatures that make Inflammatory Breast Cancer a truly distinct entity. Despite this, the potential for inaccurate diagnosis and misclassification in cases of Inflammatory Breast Cancer is increased by many factors including its physical presentation.

Keywords: Inflammatory breast cancer, metastasis, tumor emboli, dermal lymphatics, stem cells, advocacy, miRNA

Article Details

How to Cite
AQUINO, Hilary C.; VAN GOLEN, Kenneth L.. Inflammatory Breast Cancer: What’s in a Name?. Medical Research Archives, [S.l.], v. 13, n. 9, sep. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6962>. Date accessed: 07 jan. 2026. doi: https://doi.org/10.18103/mra.v13i9.6962.
Section
Research Articles

References

1. Radunsky, G.S. and K.L. van Golen, The current understanding of the molecular determinants of inflammatory breast cancer metastasis. Clin Exp Metastasis, 2005. 22(8): p. 615-20.
2. Van Laere, S.J., et al., Uncovering the molecular secrets of Inflammatory Breast Cancer biology: An integrated analysis of three distinct Affymetrix gene expression data sets. Clinical Cancer Research, 2013.
3. Woodward, W.A., Inflammatory breast cancer: unique biological and therapeutic considerations. The Lancet Oncology, 2015. 16(15): p. e568-e576.
4. Kleer, C.G., K.L. van Golen, and S.D. Merajver, Molecular biology of breast cancer metastasis. Inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res, 2000. 2(6): p. 423-429.
5. Dawood, S. and V. Valero, Clinical Aspects of Inflammatory Breast Cancer: Diagnosis, Criteria, Controversy, in Inlfammatory Breast Cancer: An Update, N.T. Ueno and M. Cristofanilli, Editors. 2012, Springer: New York, N.Y. p. 11-20.
6. Fouad, T.M., et al., Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast cancer research and treatment, 2015. 152(2): p. 407-416.
7. Goldner, B., et al., Incidence of Inflammatory Breast Cancer in Women, 1992–2009, United States. Annals of surgical oncology, 2014. 21(4): p. 1267-1270.
8. van Golen, K.L. and M. Cristofanilli, The Third International Inflammatory Breast Cancer Meeting. Breast Cancer Res, 2013. 15: p. 318-321.
9. Rosenberg C, Golden, Janet, eds. Framing Disease, Studies in Cultural History. Health and Medicine in American Society. Rutgers University Press; 1992.
10. Porter L, Goodman K, Mailman J, Garrett W. Patient Advocates and Researchers as Partners in Cancer Research: a Winning Combination. American Society of Clinical Oncology Educational Book. 2023:1-8.
11. Il’yasova D. S-RS, Akushevich I, et al. What can we learn from the age-and race/ethnicity-specific rates of inflammatory breast carcinoma? Breast Cancer Research and Treatment. 2011;130(2):691-691.
12. Lee BJ, Tannanbaum NE. Inflammatory carcinoma of the breast, a report of twenty-eight cases from the breast clinic of the Memorial Hospital. Surgery, Gynecology and Obstetrics. 1924;39:580-595.
13. Le-Petross HT, Balema W, Woodward WA. Why Diagnosing Inflammatory Breast Cancer is Hard and How to Overcome the Challenges: a Narrative Review. Chinese Clinical Oncology. 2021;10(6)doi:10.21037/cco-21-116
14. Institute NC. Cancer Staging. Accessed June 16, 2025. https://www.cancer.gov/about-cancer/diagnosis-staging/staging
15. Abraham HG, Xia Y, Mukherjee B, Merajver SD. Incidence and Survival of Inflammatory Breast Cancer between 1973 and 2015 in the SEER Database. Breast Cancer Research and Treatment. 2020;185:229-238.

16. Relation T, Li, Yaming, Fisher, James L., et al. Inflammatory breast cancer, trimodal treatment and mortality: does where you live matter? Surgery. 2022;171(3):687-692.

17. Devi GR, Fish LJ, Bennion A, et al. Identification of barriers at the primary care provider level to improve inflammatory breast cancer diagnosis and management. Preventive Medicine Reports. 2023;36(102519):1-8.
18. Schinkel JK, Zahm, S.J., Jatoi, I. et al. Racial/ethnic differences in breast cancer survival by inflammatory status and hormone receptor status: an analysis of the Surveillance, Epidemiology, and End Results data. Cancer Causes Control. 2014;25:959-968.
19. Barkataki S, Joglekar-Javandekar M, Brandfield P, Murphy T, Dickson-Witmer D, van Golen KL. Inflammatory Breast Cancer: a Panoramic View. Journal of Rare Diseases and Treatment. 2018;3(2):37-43.
20. Hester RH, Hortobagyi GN, Lim B. Inflammatory Breast Cancer: Early Recognition and Diagnosis is Critical. American Journal of Obstetrics and Gynecology. October 2021:392-396.
21. KFF. Women’s Health Policy. Accessed June 16, 2025. https://www.kff.org/womens-health-policy/fact-sheet/coverage-of-breast-cancer-screening-and-prevention-services/
22. Takahashi Y, Sridhar, N., Iwase, T. et al. Inflammatory breast cancer, best practice in the community setting. npj Breast Cancer. 2025;11(52)
23. Woodward WA. Deescalation Perils in Inflammatory Breast Cancer. Invited Commentary. JAMA Network Open. Feb 26 2025;8(2)
24. Chippa V, Barazi H. Inflammatory Breast Cancer. StatPearls {Internet}; updated 2023 April 16. Accessed 2025. https://www.ncbi.nlm.nih.gov/books/NBK564324/
25. Advocates in Research Working Group: Recommendations (2011).
26. Porter L, Goodman K, Mailman J, Garrett W. Patient Advocates and Researchers as Partners in Cancer Research: a Winning Combination. American Society of Clinical Oncology Educational Book. 2023:1-8.
27. Spears PA. Patient Engagement in Cancer Research from the Patient’s Perspective. Future Oncology. 2021;17(28):3717-3728.
28. Donahue J, Earls J, Fraser V, Mason G, Pirowski H, Stephens P. Inflammatory breast cancer (IBC) advocacy - past, present and future! International Review of Cell and Molecular Biology. 2023;doi:https://doi.org/10.1016/bs.ircmb.2023.11.001
29. Inflammatory Breast Cancer International Consortium. Accessed June 17, 2025. https://ibcic.org/about-ibc-ic/
30. The IBC Network Foundation. June 17, Accessed June 17, 2025. https://theibcnetwork.org/
31. Denu RA, Hampton JM, Currey A, Anderson RT, Cress R. Racial and socioeconomic disparities are more pronounced in inflammatory breast cancer than in other breast cancers. Journal of Cancer Epidemiology. 2017;2017(1-8)7574946.
32. Fighting 4 the Tatas. Accessed January, 2024 https://fighting4thetatas.org/
33. Scientific Peer Review of Breast Cancer Research Applications for the Department of Defense. 2012.
34. Avery J, Thomas R, Howell D, Dubouloz Wilner C-J. Empowering Cancer Survivors in Managing Their Own Health: A Paradoxical Dynamic Process of Taking and Letting Go of Control. Qualitative Health Research. 2023;33(5):412-425.
35. The Inflammatory Breast Cancer Foundation. Accessed January, 2024. https://eraseibc.org/about-us
36. Hoosier Breast Cancer Advocates. Accessed January, 2024. https://www.hoosierbcadvocates.com/
37. Catherine Peachey Fund. Accessed January, 2024. https://www.peacheyfund.com/
38. Osborne, B.M., Granulomatous mastitis caused by histoplasma and mimicking inflammatory breast carcinoma. Hum Pathol, 1989. 20(1): p. 47-52.
39. Dahlbeck, S.W., J.F. Donnelly, and R.L. Theriault, Differentiating inflammatory breast cancer from acute mastitis. Am Fam Physician, 1995. 52(3): p. 929-34.
40. Chambler, A.F., et al., Inflammatory breast carcinoma. Surg Oncol, 1995. 4(5): p. 245-54.
41. Dvoretsky, P.M., et al., The pathology of breast cancer in women irradiated for acute postpartum mastitis. Cancer, 1980. 46(10): p. 2257-62.
42. Charpin, C., et al., Inflammatory breast carcinoma: an immunohistochemical study using monoclonal anti-pHER-2/neu, pS2, cathepsin, ER and PR. Anticancer Res, 1992. 12(3): p. 591-7.
43. Moll, U.M., G. Riou, and A.J. Levine, Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A, 1992. 89(15): p. 7262-6.
44. Zhang, D., LaFortune, T.A., Krishnamurthy, D., Esteva, F.J., Critofanilli, M., Liu, P., Lucci, A., Singh, B., Hung, M-C., Hortobagyi, G.N., and Ueno, N.T. Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis of inflammatory breast cancer. Clin. Cancer Res., 2009. 15(21): 6639-6648.
45. van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clinical cancer research : an official journal of the American Association for Cancer Research. 1999;5(9):2511-9. Epub 1999/09/28. PubMed PMID: 10499627.
46. van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer research. 2000;60(20):5832-8. Epub 2000/11/04. PubMed PMID: 11059780.
47. Van Laere, S., Van der Auwera, I., Van den Eynden, G.G., Fox, S.B., Bianchi, F., Harris, A.L., van Dam, P., Van Marck, E.A., Vermeulen, P.B., and Dirix, L.Y. Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 2005; 93(3): 237-46.
48. Lehman, H.L., et al., Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer, 2012.
49. Xiao, Y., Ye, Y., Yearsley, K., Jones, S. and Barsky, S.H. The lymphovasular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2): 561-74. 2008
50. Yousefina, S. Forootan, S.F., Forootan, S.S., Esfahani, M.H.N., Gure, A.O. and Ghaedi, K. Mechanistic pathways of malignancy in breast cancer stem cells. Front. Oncol. 10. 2020 https://doi.org/10.3389/fonc.2020.00452
51. Van Laere, S.J., Van der Auwera, I., Van den Enynden, G.G., van Dam, P., Van Marck, E.A.,Vermeulen, P.B. and Dirix, L.Y. NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ERbB2 overexpression and MAPK hyperactivation. Br J Cancer 97(5): 659-69. 2007.
52. Lehman, H.L., Van Laere, S.J., van Golen, C.M., Vermeulen, P.B., Dirix, L.Y. and van Golen, K.L. Regulation of inflammatory breast cancer cell invasion through Akt1/PKB phosphorylation of RhoC GTPase. Mol Cancer Res 10(10): 1306-18. 2012.
53. Joglekar, M., Elbazanti, W.O., Wietzman, M.D., Lehman, H.L. and van Golen, K.L. Caveolin-1 mediates inflammatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem 116(6): 923-33. 2015.
54. Zhang, H., Bajraszewski, N., Wu, E., Wang, H., Moseman, A.P., Dabora, S.L., Griffin, J.D. and Kwiatkowski, D.J. PDGFRs are critical for PI#K/Akt activation and negatively regulated by mTOR. J Clin Invest. 117(8): 730-38. 2007.
55. Huang, M., Duhadaway, J.B., Prendergast, G.C. and Laury-Kleintop, L. RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27(12): 2597-605. 2007.
56. van Golen, K.L., Bao, L., DiVito, M.M., Wu, Z., Prendergast, G.C. and Merajver, S.D. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with farnesyl transferase inhibitor. Mol Cancer Ther 1(8): 575-83. 2002.
57. Chatterjee, M. and van Golen, K.L. Franesyl transferast inhibitor treatment of breast cancer cells leads to altered RhoA and RhoC GTPase activity and induces a dormant phenotype. Int J Cancer 129(1): 61-9. 2011
58. Joglekar-Javadekar, M., Van Laere, S., Bourne, M., Moalwi, M., Finetti, P., Vermeulen, P.B., Birnbaum, D., Dirix, L.Y., Ueno, N., Carter, M., Rains, J., Ramachandran, A., Bertucci, F. and van Golen, K.L. Characterization and targeting of Platelet-Derived Growth Factor alpha (PDGFRA) in inflammatory breast cancer (IBC). Neoplasia 19(7): 564-73. 2017.
59. Martin B. Dermatology Secrets. In: James E, John L, editors. Dermatology. New Delhi: Jaypee Brothers; 1997. p. 310-20.
60. Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, Sneige N, Islam R, Ueno NT, Buchholz TA, Singletary SE, Hortobagyi GN. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436-44. Epub 2007/08/19. doi: 10.1002/cncr.22927. PubMed PMID: 17694554.
61. Perrot, C.Y., D. Javelaud, and A. Mauviel, Insights into the transforming growth factor beta signaling pathway in cutaneous melanoma. Ann Dermatol, 2013. 25(2): p. 135-144.
62. Schmid, P., P. Itin, and T. Rufli, In situ analysis of transforming growth factor-βs (TGF-β1, TGF-β2, TGF-β3and TGF-3 type II receptor expression in malignant melanoma. Carcinogenesis, 1995. 16(7): p. 1499-1503.
63. Barcellos-Hoff, M.H., Radiation-induced Transforming Growth Factor β and Subsequent Extracellular Matrix Reorganization in Murine Mammary Gland. Cancer Res, 1993. 53(17): p. 3880-3886.
64. Cichon, Magdalena A., Evette S. Radisky, and Derek C. Radisky, Identifying the Stroma as a Critical Player in Radiation-Induced Mammary Tumor Development. Cancer Cell, 2011. 19(5): p. 571-572.
65. Ehrhart, E.J., et al., Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low dose gamma-irradiation. FASEB, 1997. 11: p. 991-1002.
66. Giampieri, S., et al., Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol, 2009. 11(11): p. 1287-96.
67. Gotzmann, J., et al., Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat.Res., 2004. 566(1): p. 9-20.
68. Mukai, M., et al., RhoC is essential for TGF-beta1-induced invasive capacity of rat ascites hepatoma cells. Biochem Biophys Res Commun, 2006. 346(1): p. 74-82.
69. Lehman, H.L., et al., Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer, 2012.
70. Yang, H., Zhou, J., Mi, J., Ma, K., Fan, F., Ning, j., Wang, C., Wei, X., Zhao, H. and Li, E. HOXD10 acts as a tumor-supressive factor via inhibition of the RhoC/Akt/MAPK pathway in human cholangiocellular carcinoma. Oncol Rep 34(4): 1681-91. 2015.
71. Ma, L., Teruya-Feldstein, J. & Weinberg, R. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007). https://doi.org/10.1038/nature06174
72. Wang, J., Yan, Y., Zhang, Z., & Li, Y. (2019). Role of miR-10b-5p in the prognosis of breast cancer. PeerJ, 7.
73. Al-Qadi, N., Halim, A.S., Mackie, H., Sempere, L.F., & Moore, A. (2023). Exploring the effects of inhibiting miR-10b on breast cancer stemness and metastasis. Journal of Clinical Oncology.
74. Guo, D., Guo, J., Li, X., & Guan, F. (2018). Enhanced motility and proliferation by miR-10b/FUT8/p-AKT axis in breast cancer cells. Oncology Letters, 16, 2097 – 2104
75. Wang, X., Gu, J., Miyoshi, E., Honke, K. and Taniguchi, N. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of Growth Receptor(s). Methods Enzymology 417: 11-12. 2006.
76. Halim, A., Al-Qadi, N., Kenyon, E., Conner, K.N., Mondal, S.K., Medarova, Z. and Moore, A. Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties. Oncotarget 15: 591-606. 2024