Insights from comprehensive evaluation of children and adolescents with Duchenne Muscular Dystrophy using cardiac magnetic resonance imaging and pulmonary function testing
Main Article Content
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is fatal X-linked neuromuscular disorder characterized by progressive dilated cardiomyopathy, respiratory insufficiency, and autonomic dysfunction. Cardiac, pulmonary, and autonomic function are thought to decline with disease progression in a co-dependent manner. However, these relationships have not been systematically evaluated. Right ventricular health, which depends on normal pulmonary hemodynamics, also remains understudied in DMD. The objective of this study was to characterize the relationships of pulmonary function test (PFT) parameters and indices of autonomic function, with cardiac magnetic resonance imaging (CMR) biomarkers of biventricular function and remodeling in children and adolescents with DMD.
Methods: We performed a prospective analysis of 27 boys with DMD who underwent CMR, PFT, and 24-hour ambulatory electrocardiogram (aECG) monitoring at two children’s hospitals to evaluate cardiac, pulmonary, and autonomic function, respectively. The CMR protocol included conventional biventricular volumetric and functional assessment, late gadolinium enhancement (LGE) imaging to detect focal myocardial fibrosis, and T1 mapping to assess diffuse fibrosis. PFTs were performed per institutional protocols and included spirometry and respiratory muscle strength testing. Average heart rate and the standard deviation of the time between normal heartbeats (SDNN) were obtained from aECG. The cohort was stratified based on presence of LGE and predicted forced vital capacity (FVC) <80%, both suggestive of more advanced disease.
Results: Median age of the cohort was 13 years (IQR 11-15.5 years). 8 patients were LGE (+) and 19 were LGE (-). LGE (+) boys had significantly lower percent predicted maximum expiratory pressure (MEP%) (25.8 vs. 48.0, p=0.035). Other respiratory, autonomic, and right ventricular function indices did not correlate with LGE status. There were no significant differences in CMR or autonomic parameters between boys with normal (FVC ≥80%) and abnormal (FVC <80%) pulmonary function.
Conclusion: Our findings suggest that cardiac, pulmonary, and autonomic function may decline independently with disease progression; dysfunction in one system did not necessarily correlate with dysfunction in the other. Decline in respiratory muscle strength, as measured by MEP%, was seen more often in patients with myocardial scarring (indicative of more advanced disease). Further longitudinal investigation involving prospective modulation of respiratory support during CMR may elucidate more subtle cardiopulmonary-autonomic interactions in DMD.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature. 1986;323:646-650. doi: 10.1038/323646a0
3. Wallace GQ, McNally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol. 2009;71:37-57. doi: 10.1146/annurev.physiol.010908.163216
4. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77-93. doi: 10.1016/S1474-4422(09)70271-6
5. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9:177-189. doi: 10.1016/S1474-4422(09)70272-8
6. Khirani S, Ramirez A, Aubertin G, Boule M, Chemouny C, Forin V, Fauroux B. Respiratory muscle decline in Duchenne muscular dystrophy. Pediatr Pulmonol. 2014;49:473-481. doi: 10.1002/ppul.22847
7. Fayssoil A, Nardi O, Orlikowski D, Annane D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail Rev. 2010;15:103-107. doi: 10.1007/s10741-009-9156-8
8. Inoue M, Mori K, Hayabuchi Y, Tatara K, Kagami S. Autonomic function in patients with Duchenne muscular dystrophy. Pediatr Int. 2009;51:33-40. doi: 10.1111/j.1442-200X.2008.02656.x
9. Lanza GA, Dello Russo A, Giglio V, De Luca L, Messano L, Santini C, Ricci E, Damiani A, Fumagalli G, De Martino G, et al. Impairment of cardiac autonomic function in patients with Duchenne muscular dystrophy: relationship to myocardial and respiratory function. Am Heart J. 2001;141:808-812. doi: 10.1067/mhj.2001.114804
10. Thomas TO, Jefferies JL, Lorts A, Anderson JB, Gao Z, Benson DW, Hor KN, Cripe LH, Urbina EM. Autonomic dysfunction: a driving force for myocardial fibrosis in young Duchenne muscular dystrophy patients? Pediatr Cardiol. 2015;36:561-568. doi: 10.1007/s00246-014-1050-z
11. Cheeran D, Khan S, Khera R, Bhatt A, Garg S, Grodin JL, Morlend R, Araj FG, Amin AA, Thibodeau JT, et al. Predictors of Death in Adults With Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc. 2017;6. doi: 10.1161/JAHA.117.006340
12. Magrath P, Maforo N, Renella P, Nelson SF, Halnon N, Ennis DB. Cardiac MRI biomarkers for Duchenne muscular dystrophy. Biomark Med. 2018;12:1271-1289. doi: 10.2217/bmm-2018-0125
13. Adorisio R, Mencarelli E, Cantarutti N, Calvieri C, Amato L, Cicenia M, Silvetti M, D'Amico A, Grandinetti M, Drago F, et al. Duchenne Dilated Cardiomyopathy: Cardiac Management from Prevention to Advanced Cardiovascular Therapies. J Clin Med. 2020;9. doi: 10.3390/jcm9103186
14. Hor KN, Taylor MD, Al-Khalidi HR, Cripe LH, Raman SV, Jefferies JL, O'Donnell R, Benson DW, Mazur W. Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson. 2013;15:107. doi: 10.1186/1532-429X-15-107
15. Olivieri LJ, Kellman P, McCarter RJ, Cross RR, Hansen MS, Spurney CF. Native T1 values identify myocardial changes and stratify disease severity in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18:72. doi: 10.1186/s12968-016-0292-8
16. Dual SA, Maforo NG, McElhinney DB, Prosper A, Wu HH, Maskatia S, Renella P, Halnon N, Ennis DB. Right Ventricular Function and T1-Mapping in Boys With Duchenne Muscular Dystrophy. J Magn Reson Imaging. 2021;54:1503-1513. doi: 10.1002/jmri.27729
17. Maforo NG, Magrath P, Moulin K, Shao J, Kim GH, Prosper A, Renella P, Wu HH, Halnon N, Ennis DB. T(1)-Mapping and extracellular volume estimates in pediatric subjects with Duchenne muscular dystrophy and healthy controls at 3T. J Cardiovasc Magn Reson. 2020;22:85. doi: 10.1186/s12968-020-00687-z
18. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17:251-267. doi: 10.1016/S1474-4422(18)30024-3
19. Evans JA, Whitelaw WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009;54:1348-1359.
20. Schoser B, Fong E, Geberhiwot T, Hughes D, Kissel JT, Madathil SC, Orlikowski D, Polkey MI, Roberts M, Tiddens HA, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis. 2017;12:52. doi: 10.1186/s13023-017-0598-0
21. Mayer OH, Finkel RS, Rummey C, Benton MJ, Glanzman AM, Flickinger J, Lindstrom BM, Meier T. Characterization of pulmonary function in Duchenne Muscular Dystrophy. Pediatr Pulmonol. 2015;50:487-494. doi: 10.1002/ppul.23172
22. Meier T, Rummey C, Leinonen M, Spagnolo P, Mayer OH, Buyse GM, Group DS. Characterization of pulmonary function in 10-18 year old patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:307-314. doi: 10.1016/j.nmd.2016.12.014
23. Kleiger RE, Stein PK, Bigger JT, Jr. Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol. 2005;10:88-101. doi: 10.1111/j.1542-474X.2005.10101.x
24. Guo Y, Palmer JL, Strasser F, Yusuf SW, Bruera E. Heart rate variability as a measure of autonomic dysfunction in men with advanced cancer. Eur J Cancer Care (Engl). 2013;22:612-616. doi: 10.1111/ecc.12066
25. Tsuji H, Larson MG, Venditti FJ, Jr., Manders ES, Evans JC, Feldman CL, Levy D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94:2850-2855. doi: 10.1161/01.cir.94.11.2850
26. Melacini P, Vianello A, Villanova C, Fanin M, Miorin M, Angelini C, Dalla Volta S. Cardiac and respiratory involvement in advanced stage Duchenne muscular dystrophy. Neuromuscul Disord. 1996;6:367-376. doi: 10.1016/0960-8966(96)00357-4
27. Xue H, Kellman P, Larocca G, Arai AE, Hansen MS. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson. 2013;15:102. doi: 10.1186/1532-429X-15-102
28. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, Cooper BG, Culver B, Derom E, Hall GL, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60. doi: 10.1183/13993003.01499-2021
29. Silva MC, Meira ZM, Gurgel Giannetti J, da Silva MM, Campos AF, Barbosa Mde M, Starling Filho GM, Ferreira Rde A, Zatz M, Rochitte CE. Myocardial delayed enhancement by magnetic resonance imaging in patients with muscular dystrophy. J Am Coll Cardiol. 2007;49:1874-1879. doi: 10.1016/j.jacc.2006.10.078
30. Subramanian SH, N. K; Mazur, W; Smart, S; Tran, T; Halnon, N; Taylor, D. M; Cripe, L; Raman, V. S. Effect of pulmonary function on right heart function in Duchenne muscular dystrophy patients. J Cardiovasc Magn Reson. 2015;17:P279. doi: 10.1186/1532-429X-17-S1-P279
31. Mehmood M, Ambach SA, Taylor MD, Jefferies JL, Raman SV, Taylor RJ, Sawani H, Mathew J, Mazur W, Hor KN, et al. Relationship of Right Ventricular Size and Function with Respiratory Status in Duchenne Muscular Dystrophy. Pediatr Cardiol. 2016;37:878-883. doi: 10.1007/s00246-016-1362-2
32. McDonald CM, Gordish-Dressman H, Henricson EK, Duong T, Joyce NC, Jhawar S, Leinonen M, Hsu F, Connolly AM, Cnaan A, et al. Longitudinal pulmonary function testing outcome measures in Duchenne muscular dystrophy: Long-term natural history with and without glucocorticoids. Neuromuscul Disord. 2018;28:897-909. doi: 10.1016/j.nmd.2018.07.004