High Velocity Therapy as A Warming Tool for Acutely Injured Patients: Two Case Reports

Main Article Content

Megan G. Wooldridge JJ. Lago Valdez María , Chacón Gómez W. Douglas Gregorie http://orcid.org/0000-0002-3886-5240 Jessica S. Whittle http://orcid.org/0000-0003-3177-8934

Abstract

Background: Hypothalamic thermoregulation allows humans to adjust and maintain core body temperature, facilitating essential biochemical reactions for metabolic processes. When heat energy loss exceeds endothermic capacity of the body, core body temperature decreases, slowing critical reactions. Without patient warming solutions, patients with injuries resulting in thermoregulatory disturbances are at risk of multiple organ failure and/or death.


Aim: Illustrate thermoregulatory stabilization capacity of heated, humidified high velocity therapy (HVT), a refined form of high flow nasal canula (HFNC), and its utilization in a range of clinical scenarios which traditionally require active temperature management.


Scope: Many clinicians are unaware that the lungs can provide as much as 140m 2 surface area for heat exchange, compared with approximately 2m 2 of skin. With HVT there is an opportunity for clinicians to offer efficient additional thermoregulatory support via non-invasive methods with an established safety profile, whilst simultaneously meeting oxygen and ventilation requirements of the patient.


Case 1: A 67-year-old female presented with accidental hypothermia due to environmental exposure, with hyperextension injury at C4-C5. The patient"s core body temperature was 30°C [86°F] upon discovery. Within 4 hours the patient"s temperature increased to 35°C [95° F] with the use of heated blanket and HVT. The underlying injury and pattern of recovery was consistent with central cord syndrome.


Case 2: A 5-month-old female experienced severe burns and was weaned from intubation using HVT for respiratory and thermoregulatory support. This patient was at high risk for mucosal airway dysfunction, temperature instability, and other poor outcomes, but remained stable and recovered.


Discussion: The utility of HVT as a respiratory device with thermoregulatory capacity was explored using case studies and available literature. HVT delivers warmed humidified gas that oxygenates and ventilates simultaneously, reduces work of breathing, preserves mucociliary clearance, and reduces metabolic cost associated with humidifying and heating inspired air. HVT performed within its accepted safety profile with no identified side effects.


Conclusion: HVT can offer an adjunctive warming benefit for patients with reduced temperature control capacity. This may be especially valuable for patients requiring respiratory support or those who may benefit from optimized humidification of inspired gas.

Article Details

How to Cite
WOOLDRIDGE, Megan G. et al. High Velocity Therapy as A Warming Tool for Acutely Injured Patients: Two Case Reports. Medical Research Archives, [S.l.], v. 13, n. 12, dec. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7037>. Date accessed: 02 jan. 2026. doi: https://doi.org/10.18103/mra.v13i12.7037.
Section
Research Articles

References

1. Petersson J, Glenny RW, Respir E. Gas exchange and ventilation-perfusion relationships in the lung REVIEW IN PRESS | CORRECTED PROOF ERJ Express. J (Basel). Published online 2014. doi:10.1183/09031936.00037014
2. Paal P, Pasquier M, Darocha T, et al. Accidental Hypothermia: 2021 Update. Int J Environ Res Public Health. 2022;19(1):501. doi:10.3390/IJERPH19010501
3. Teresiński G, Staśkiewicz G. Hypothermia. Forensic Imaging of Trauma. Published online January 19, 2024:141-167. doi:10.1007/978-3-031-48381-3_8
4. Oude Lansink-Hartgring A, van Minnen O, Vermeulen KM, et al. Hospital Costs of Extracorporeal Membrane Oxygenation in Adults: A Systematic Review. Pharmacoecon Open. 2021;5(4):613. doi:10.1007/S41669-021-00272-9
5. Fire loss in the United States | NFPA Research. Accessed October 14, 2025. https://www.nfpa.org/education-and-research/research/nfpa-research/fire-statistical-reports/fire-loss-in-the-united-states
6. Ivanko A, Garbuzov AE, Schoen JE, et al. The Burden of Burns: An Analysis of Public Health Measures. Journal of Burn Care & Research. 2024;45(5):1095-1097. doi:10.1093/JBCR/IRAE053
7. Lam NN, Hung NT, Khanh NN. Cost Analysis and Influencing Factors Amongst Severe Burn Patients. Ann Burns Fire Disasters. 2023;36(3):183. Accessed October 14, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC11041904/
8. Saavedra PAE, Leal JVDO, Areda CA, Galato D. The Costs of Burn Victim Hospital Care around the World: A Systematic Review. Iran J Public Health. 2021;50(5):866. doi:10.18502/IJPH.V50I5.6104
9. Biffi S, Di Bella S, Scaravilli V, et al. Infections during extracorporeal membrane oxygenation: epidemiology, risk factors, pathogenesis and prevention. Int J Antimicrob Agents. 2017;50(1):9-16. doi:10.1016/j.ijantimicag.2017.02.025
10. Yi N, Wang Z, Cui R. Warming with a composite warming strategy reduces intraoperative hypothermia in patients undergoing open hepatectomy for liver cancer: A randomized controlled study. Medicine. 2025;104(8):e41616. doi:10.1097/MD.0000000000041616
11. Cooper KE. Some historical perspectives on thermoregulation. J Appl Physiol. 2002;92:1717-1724. doi:10.1152/japplphysiol.01051.2001.-In
12. Oprita B, Olaru I, Botezatu L, Diaconu AE, Oprita R. Management of Severe Hypothermia: Challenges and Advanced Strategies. J Clin Med. 2025;14(5):1584. doi:10.3390/JCM14051584
13. Paal P, Gordon L, Strapazzon G, et al. Accidental hypothermia-an update. Scand J Trauma Resusc Emerg Med. 2016;24(1):1-20. doi:10.1186/S13049-016-0303-7/FIGURES/2
14. Lloyd EL, Senior FFARCS. 48 AIRWAY WARMING IN ACCIDENTAL HYPOTHERMIA.
15. Lott C, Truhlář A, Alfonzo A, et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation. 2021;161:152-219. doi:10.1016/J.RESUSCITATION.2021.02.011
16. Akın M, Tuncer HB, Akgün AE, Erkılıç E. New Treatment Modality for Burn Injury-Related Acute Respiratory Distress Syndrome: High-Flow Nasal Oxygen Therapy in Major Burns. J Burn Care Res. 2024;45(4):1060-1065. doi:10.1093/JBCR/IRAE066
17. Teległów A, Cicha I. Single immersion in cold water below 4 °C: A health hazard in young healthy men? PLoS One. 2025;20(5):e0324502. doi:10.1371/journal.pone.0324502
18. 18. Peixoto C de A, Ferreira MBG, dos Santos Felix MM, et al. Factors contributing to intraoperative hypothermia in patients undergoing elective surgery. Perioper Care Oper Room Manag. 2021;22:100150. doi:10.1016/J.PCORM.2020.100150
19. Science P, Wang J feng, Deng X ming. Inadvertent hypothermia: a prevalent perioperative issue that remains to be improved. Anesthesiology and Perioperative Science 2023 1:3. 2023;1(3):1-13. doi:10.1007/S44254-023-00022-6
20. Vacante M, Biondi A, Basile F, et al. Hypothyroidism as a Predictor of Surgical Outcomes in the Elderly. Front Endocrinol (Lausanne). 2019;10(APR). doi:10.3389/FENDO.2019.00258
21. Yoo JH, Sung TY, Oh CS. Cold temperatures, hot risks: perioperative hypothermia in geriatric patients - a narrative review. Anesth Pain Med (Seoul). 2025;20(3):189-199. doi:10.17085/APM.25294
22. Rauch S, Miller C, Bräuer A, Wallner B, Bock M, Paal P. Perioperative Hypothermia-A Narrative Review. Int J Environ Res Public Health. 2021;18(16). doi:10.3390/IJERPH18168749
23. Gowda R, Jaffa M, Badjatia N. Thermoregulation in brain injury. Handb Clin Neurol. 2018;157:789-797. doi:10.1016/B978-0-444-64074-1.00049-5
24. Cheshire WP. Thermoregulatory disorders and illness related to heat and cold stress. Autonomic Neuroscience. 2016;196:91-104. doi:10.1016/J.AUTNEU.2016.01.001
25. Doman M, Thy M, Dessajan J, et al. Temperature control in sepsis. Front Med (Lausanne). 2023;10. doi:10.3389/FMED.2023.1292468
26. Warby R, Maani C V. Burn Classification. StatPearls. Published online September 26, 2023. Accessed September 12, 2025. https://www.ncbi.nlm.nih.gov/books/NBK539773/
27. Body surface area in children (image) | Medicines guidance | BNFC | NICE. Accessed September 11, 2025. https://bnfc.nice.org.uk/medicines-guidance/body-surface-area-in-children-image/
28. McCann C, Watson A, Barnes D. Major burns: Part 1. Epidemiology, pathophysiology and initial management. BJA Educ. 2022;22(3):94-103. doi:10.1016/j.bjae.2021.10.001
29. Driver J, Fielding A, Mullhi R, Chipp E, Torlinski T. Temperature management of adult burn patients in intensive care: findings from a retrospective cohort study in a tertiary centre in the United Kingdom. Anaesthesiol Intensive Ther. 2022;54(3):226. doi:10.5114/AIT.2022.119131
30. Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int J Mol Sci. 2023;24(4):3749. doi:10.3390/IJMS24043749
31. Alshammari RA, Qaisi HM, Zaben M, et al. Burns: Biochemical Aspects, Pathophysiology, Classification, Treatment, and Nursing Care. Journal of Medicinal and Chemical Sciences. 2024;7(12):1754-1770. doi:10.26655/JMCHEMSCI.2024.12.1
32. Zimmermann L, Maiellare F, Veyckemans F, et al. Airway management in pediatrics: improving safety. J Anesth. 2024;39(1):123. doi:10.1007/S00540-024-03428-Z
33. Byerly FL, Haithcock JA, Buchanan IB, Short KA, Cairns BA. Use of high flow nasal cannula on a pediatric burn patient with inhalation injury and post-extubation stridor. Burns. 2006;32(1):121-125. doi:10.1016/J.BURNS.2005.05.003
34. Francesco C, Vincenzo P, Antonio T, et al. High-flow nasal cannula oxygen therapy in the weaning of severe burn patients: a preliminary report of data collection. Signa Vitae. 2023;19(4):58-62. doi:10.22514/sv.2023.009
35. Petersen P, Liberio J, Dominguez S, Tojong J, Sanford A, Baldea A. 210 The Use of Humidified High Flow Nasal Cannula Post-Extubation to Decrease the Incidence of Reintubations in Adult and Pediatric Patients Treated in a Burn Center. Journal of Burn Care & Research. 2019;40(Supplement_1):S85-S85. doi:10.1093/JBCR/IRZ013.138
36. Swanson JW, Otto AM, Gibran NS, et al. Trajectories to death in patients with burn injury. J Trauma Acute Care Surg. 2013;74(1):282-288. doi:10.1097/TA.0B013E3182788A1C
37. Sjoberg F, Elmasry M, Abdelrahman I, et al. The impact and validity of the Berlin criteria on burn-induced ARDS: Examining mortality rates, and inhalation injury influences. A single center observational cohort study. Burns. 2024;50(6):1528-1535. doi:10.1016/J.BURNS.2024.05.005
38. Bittner E, Sheridan R. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am. 2023;103(3):439. doi:10.1016/J.SUC.2023.01.006
39. Hernández G, Vaquero C, González P, et al. Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA. 2016;315(13):1354-1361. doi:10.1001/JAMA.2016.2711
40. 40. Zhou X, Liu J, Pan J, Xu Z, Xu J. The ROX index as a predictor of high-flow nasal cannula outcome in pneumonia patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. BMC Pulm Med. 2022;22(1):121. doi:10.1186/S12890-022-01914-2
41. 41. Haywood ST, Whittle JS, Volakis LI, et al. HVNI vs NIPPV in the treatment of acute decompensated heart failure: Subgroup analysis of a multi-center trial in the ED. Am J Emerg Med. 2019;37(11):2084-2090. doi:10.1016/j.ajem.2019.03.002
42. Yamane DP, Jones CW, Wilkerson RG, et al. High-velocity nasal insufflation versus noninvasive positive pressure ventilation for moderate acute exacerbation of chronic obstructive pulmonary disease in the emergency department: A randomized clinical trial. Academic Emergency Medicine. 2025;32(4):403-413. doi:10.1111/ACEM.15038
43. Doshi P, Whittle JS, Bublewicz M, et al. High-Velocity Nasal Insufflation in the Treatment of Respiratory Failure: A Randomized Clinical Trial. Ann Emerg Med. 2018;72(1):73-83.e5. doi:10.1016/J.ANNEMERGMED.2017.12.006,
44. Milési C, Boubal M, Jacquot A, et al. High-flow nasal cannula: recommendations for daily practice in pediatrics. Ann Intensive Care. 2014;4(1):29. doi:10.1186/S13613-014-0029-5
45. Smith AL, Kelly DP, Ruiz EA, et al. Optimizing High-Flow Nasal Cannula Weaning in Patients With Bronchiolitis. Hosp Pediatr. 2025;15(6):511-518. doi:10.1542/HPEDS.2024-008141
46. Mcqueen M, Rojas J, Sun SC, et al. Safety and Long Term Outcomes with High Flow Nasal Cannula Therapy in Neonatology: A Large Retrospective Cohort Study. J Pulm Respir Med. 2014;4(6):216. doi:10.4172/2161-105X.1000216
47. Marco DG. Use Of High Flow Nasal Cannula In Critical Burn Patient During Deep Sedation In Enzymatic Bromelain Debridement (Nexobrid ® ): A Single Center Brief Report Utilisation D’oxygène À Haut Débit Sur Lunettes Nasales Pendant La Sédation Profonde Nécessitée Par Le Débridement Enzymatique À La Bromélaïne (Nexobrid ® ) Chez Des Patients Graves: Une Courte Série Monocentrique. Ann Burns Fire Disasters. Published online 2024.
48. UNICORN® Nasal Cannulas | Vapotherm. Accessed October 6, 2025. https://vapotherm.com/unicorn/
49. Atwood C, Sethi J, Bergeski A, Dungan GC, Volakis LI, Whittle JS. Effect of Single-Prong Cannula Design With High Velocity Therapy: Comparable Efficacy at Lower Gas Flow Rates. Crit Care Explor. 2025;7(2):e1209. doi:10.1097/CCE.0000000000001209
50. Kimberger O, Held C, Stadelmann K, et al. Resistive polymer versus forced-air warming: Comparable heat transfer and core rewarming rates in volunteers. Anesth Analg. 2008;107(5):1621-1626. doi:10.1213/ANE.0B013E3181845502
51. Kornberger E, Schwarz B, Lindner KH, Mair P. Forced air surface rewarming in patients with severe accidental hypothermia. Resuscitation. 1999;41(2):105-111. doi:10.1016/S0300-9572(99)00069-6
52. Levi Kitchen C. Joint Trauma System Clinical Practice Guideline (JTS CPG).
53. 53. Xu H, Xu G, Ren C, Liu L, Wei L. Effect of forced-air warming system in prevention of postoperative hypothermia in elderly patients: A Prospective controlled trial. Medicine. 2019;98(22). doi:10.1097/MD.0000000000015895
54. Al-Dardery NM, Abdelwahab OA, El-Samahy M, Seif AM, Mouffokes A, Khaity A. Self-warming blankets versus active warming by forced-air devices for preventing hypothermia: A systematic review and meta-analysis. Medicine. 2023; 102(18):E33579. doi:10.1097/MD.0000000000033579
55. Mccullough L, Arora S. Diagnosis and Treatment of Hypothermia. Am Fam Physician. 2004;70(12): 2325-2332. Accessed September 23, 2025. https://www.aafp.org/pubs/afp/issues/2004/1215/p2325.html
56. Dow J, Giesbrecht GG, Danzl DF, et al. Wilderness Medical Society Clinical Practice Guidelines for the Out-of-Hospital Evaluation and Treatment of Accidental Hypothermia: 2019 Update. Wilderness Environ Med. 2019;30(4S):S47-S69. doi:10.1016/J.WEM.2019.10.002
57. Sessler DI. Perioperative heat balance. Anesthesiology. 2000;92(2):578-590. doi:10.1097/00000542-200002000-00042
58. Brown DJA, Brugger H, Boyd J, Paal P. Accidental Hypothermia. New England Journal of Medicine. 2012;367(20):1930-1938. doi:10.1056/NEJMRA1114208
59. Accidental hypothermia in adults: Management - UpToDate. Accessed September 23, 2025. https://www.uptodate.com/contents/accidental-hypothermia-in-adults-management?search=hypothermia&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2
60. Overview | Hypothermia: prevention and management in adults having surgery | Guidance | NICE.
61. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209-1216. doi:10.1056/NEJM199605093341901
62. Takauji S, Hayakawa M, Yokobori S, et al. Intensive care with endovascular catheter rewarming for accidental severe hypothermia (ICE-CRASH II): a protocol for a randomised controlled study. BMJ Open. 2025;15(9):e104625. doi:10.1136/BMJOPEN-2025-104625
63. van Veelen MJ, Brodmann Maeder M. Hypothermia in Trauma. Int J Environ Res Public Health. 2021;18(16):8719. doi:10.3390/IJERPH18168719
64. G, Ceresa IF, Bavestrello Piccini G, et al. Hypothermia: Beyond the Narrative Review-The Point of View of Emergency Physicians and Medico-Legal Considerations. J Pers Med. 2023;13(12). doi:10.3390/JPM13121690
65. Oprita B, Olaru I, Botezatu L, Diaconu AE, Oprita R. Management of Severe Hypothermia: Challenges and Advanced Strategies. J Clin Med. 2025;14(5). doi:10.3390/JCM14051584
66. Bjertnæs LJ, Næsheim TO, Reierth E, et al. Physiological Changes in Subjects Exposed to Accidental Hypothermia: An Update. Front Med (Lausanne). 2022;9. doi:10.3389/FMED.2022.824395
67. Savioli G, Ceresa IF, Bavestrello Piccini G, et al. Hypothermia: Beyond the Narrative Review—The Point of View of Emergency Physicians and Medico-Legal Considerations. J Pers Med. 2023;13(12):1690. doi:10.3390/JPM13121690
68. Cardiac arrest in hypothermia (accidental hypothermia) –. Accessed September 30, 2025. https://cardvasc.org/cardiac-arrest-in-hypothermia-accidentel-hypothermia/
69. Vahdatpour C, Sussman A, Mahr T. A case report of severe hypothermia complicated by acute respiratory distress syndrome. Respir Med Case Rep. 2019;28. doi:10.1016/j.rmcr.2019.100869
70. Morales CF, Strollo PJ. Noncardiogenic pulmonary edema associated with accidental hypothermia. Chest. 1993;103(3):971-973. doi:10.1378/chest.103.3.971
71. De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J. 2021;44(6):654. doi:10.1016/J.BJ.2021.07.011
72. Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int J Mol Sci. 2023;24(4):3749. doi:10.3390/IJMS24043749
73. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: Pathophysiology of Systemic Complications and Current Management. Journal of Burn Care & Research. 2016;38(1):e469. doi:10.1097/BCR.0000000000000355
74. Sommerhalder C, Blears E, Murton AJ, Porter C, Finnerty C, Herndon DN. Current Problems in Burn Hypermetabolism. Curr Probl Surg. 2019;57(1):100709. doi:10.1016/J.CPSURG.2019.100709
75. Jeschke MG. Postburn Hypermetabolism: Past, Present, and Future. Journal of Burn Care & Research. 2016;37(2):86-96. doi:10.1097/BCR.0000000000000265
76. Clark A, Imran J, Madni T, Wolf SE. Nutrition and metabolism in burn patients. Burns Trauma. 2017;5(1):1-12. doi:10.1186/S41038-017-0076-X/TABLES/3
77. Rogers A, Ho G, Mosa A, Cartotto R. Ambient Room Temperatures in a Burn Intensive Care Unit—A Quality Improvement Project. Plastic Surgery. 2022;31(4):358. doi:10.1177/22925503221078689
78. Dobson GP, Morris JL, Letson HL. Pathophysiology of Severe Burn Injuries: New Therapeutic Opportunities From a Systems Perspective. doi:10.1093/jbcr/irae049
79. Wu G, Xiao Y, Wang C, et al. Risk Factors for Acute Kidney Injury in Patients with Burn Injury: A Meta-Analysis and Systematic Review. J Burn Care Res. 2017;38(5):271-282. doi:10.1097/BCR.0000000000000438
80. Gilardi E, Petrucci M, Sabia L, Wolde Sellasie K, Grieco DL, Pennisi MA. High-flow nasal cannula for body rewarming in hypothermia. Crit Care. 2020;24(1):1-2. doi:10.1186/S13054-020-2839-1/FIGURES/1
81. Kelly SJ, Brodecky V, Skuza EM, Berger PJ, Tatkov S. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Am J Physiol Lung Cell Mol Physiol. 2021;320(4):L473-L485. doi:10.1152/AJPLUNG.00485.2020,
82. Humidification and Noninvasive Ventilation. Accessed August 13, 2025. www.liebertpub.com
83. Delorme M, Bouchard PA, Simard S, Lellouche F. Hygrometric Performances of Different High-Flow Nasal Cannula Devices: Bench Evaluation and Clinical Tolerance. Respir Care. 2021;66(11):1720-1728. doi:10.4187/RESPCARE.09085
84. Petersen K, Rice S, Potter K, et al. Heated High-Flow Nasal Cannula for the Treatment of Unintended Perioperative Hypothermia: A Feasibility Study. Ther Hypothermia Temp Manag. Published online May 12, 2025. doi:10.1089/THER.2025.0010;pagegroup:string:publication
85. Ponomarev AA, Kazennov V V., Kudryavtsev AN, Korneev A V., Alekseev AA. High Flow Oxygen Therapy in Patients with Burn Injury. Messenger of Anesthesiology And Resuscitation. 2021;18(3):46-52. doi:10.21292/2078-5658-2021-18-3-46-52
86. Mahmood S, Alani M, Al-Thani H, Mahmood I, El-Menyar A, Latifi R. Predictors of Reintubation in Trauma Intensive Care Unit: Qatar Experience. Oman Med J. 2014;29(4):289. doi:10.5001/OMJ.2014.75
87. Zhu Y, Yin H, Zhang R, Ye X, Wei J. High-flow nasal cannula oxygen therapy versus conventional oxygen therapy in patients after planned extubation: a systematic review and meta-analysis. doi:10.1186/s13054-019-2465-y
88. Tan D, Walline JH, Ling B, et al. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: a multicenter, randomized controlled trial. Crit Care. 2020;24(1):489. doi:10.1186/s13054-020-03214-9