The role of endocannabinoid signaling in the cytoskeleton functionality in migrating neurons

Main Article Content

Yury M. Morozov Pasko Rakic

Abstract

A fraction of neurons migrating through the developing brain are known to show nuclear envelope rupture and herniation of the chromatin in cytoplasm. We recently reported powerful streams of chromatin rupturing nuclear envelopes together with the plasma membranes in migrating cerebral neurons in mouse embryos. Such chromatin streams represent a novel form of cell pathology, which we named ‘piercing nuclear hernia’ (PNH). Simultaneous piercing of the nuclear and plasma membranes exposes nucleoplasm and cytoplasm to the intercellular space and may result in accidental cell death which, in contrast to the programed cell death mechanisms, are not detectable using biochemical or immunochemical markers for apoptosis, autophagy, or necrotic type of cell death. We also showed that the disfunction of the endocannabinoid system increases the probability of nuclear membrane rupture and chromatin herniation in developing brain. Indeed, about 40% of migrating neurons in cannabinoid type 1 receptor knock-out mouse embryos and wild type embryos exposed to two different agonists of the cannabinoid receptor show nuclear envelope ruptures or/and PNHs. This indicates that deviations from optimal functioning of the endocannabinoid system in under- or over-activity may trigger analogous mechanisms increasing the membrane’s vulnerability and chromatin herniation. The role of increased intranuclear pressure and cytoskeleton malfunction in the mechanism of nuclear envelope rupture is documented and commonly accepted. In accordance, our results provide evidence that optimal endocannabinoid signaling plays a role in cytoskeleton functionality in migrating neurons. In a fraction of neurons, catastrophic rupture of the nuclear and plasma membranes provokes ultrastructural pathology in the mitochondria and other organelles. At the same time, other neurons with PNH show generally normal ultrastructure that may indicate a mechanism of neuronal cell body repair. Further studies of neuronal cell body recovery may identify yet unknown molecular mechanisms and become instrumental for increasing regenerative capacity of neurons during neurodegenerative diseases, after traumatic brain injury and ischemic conditions. On the other hand, the demonstrated novel pathology of PNH in migrating cells and the procedure of its upregulation may be useful for inducing breaks of the plasma membrane and death of metastatic tumor cells.

Keywords: cannabinoid type 1 receptor, nuclear envelope rupture, cell membrane rupture and repair, accidental cell death, brain development pathology, recovery of neurons

Article Details

How to Cite
MOROZOV, Yury M.; RAKIC, Pasko. The role of endocannabinoid signaling in the cytoskeleton functionality in migrating neurons. Medical Research Archives, [S.l.], v. 13, n. 10, oct. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7041>. Date accessed: 07 dec. 2025. doi: https://doi.org/10.18103/mra.v13i10.7041.
Section
Review Articles

References

1. Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells. Nov 13 2024;13(22)doi:10.3390/cells13221875

2. Mulligan MK, Hamre KM. Influence of prenatal cannabinoid exposure on early development and beyond. Adv Drug Alcohol Res. 2023;3:10981. doi:10.3389/adar.2023.10981

3. Maccarrone M, Di Marzo V, Gertsch J, et al. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev. Sep 2023;75(5):885-958. doi:10.1124/pharmrev.122.000600

4. D'Souza DC, DiForti M, Ganesh S, et al. Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World J Biol Psychiatry. Dec 2022;23(10):719-742. doi:10.1080/ 15622975.2022.2038797

5. Koch M, Varela L, Kim JG, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. Mar 5 2015;519(7541):45-50. doi: 10.1038/nature14260

6. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. Apr 12 2001; 410(6830):822-5. doi:10.1038/35071088

7. Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends in pharmacological sciences. May 2015;36(5):277-96. doi:10.1016/j.tip s.2015.02.008

8. Sagredo O, Palazuelos J, Gutierrez-Rodriguez A, Satta V, Galve-Roperh I, Martinez-Orgado J. Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochemical pharmacology. Nov 2018; 157:85-96. doi:10.1016/j.bcp.2018.08.014

9. Bányai B, Vass Z, Kiss S, et al. Role of CB1 Cannabinoid Receptors in Vascular Responses and Vascular Remodeling of the Aorta in Female Mice. International journal of molecular sciences. Nov 17 2023;24(22)doi:10.3390/ijms242216429

10. Rouzer SK, Sreeram A, Miranda RC. Reduced fetal cerebral blood flow predicts perinatal mortality in a mouse model of prenatal alcohol and cannabinoid exposure. BMC Pregnancy Childbirth. Apr 11 2024; 24(1):263. doi:10.1186/s12884-024-06436-9

11. Morozov YM, Koch M, Rakic P, Horvath TL. Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Mol Metab. Apr 2017;6(4):374-381. doi: 10.1016/j.molmet.2017.01.004

12. Maccarrone M, Guzmán M, Mackie K, Doherty P, Harkany T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nature reviews Neuroscience. Dec 2014;15(12):786-801. doi:10.1038/nrn3846

13. Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Annual review of neuroscience. 2012;35:529-58. doi:10.11 46/annurev-neuro-062111-150420

14. Piomelli D. The molecular logic of endocannabinoid signalling. Nature reviews Neuroscience. Nov 2003 ;4(11):873-84. doi:10.1038/nrn1247

15. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. Apr 26 2002;296(5568):678-82. doi:10.1126/science.1063545

16. Katona I, Rancz EA, Acsady L, et al. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci. Dec 1 2001; 21(23):9506-18.

17. Morozov YM, Freund TF. Post-natal development of type 1 cannabinoid receptor immunoreactivity in the rat hippocampus. Eur J Neurosci. Sep 2003;18(5):1213-22.

18. Morozov YM, Mackie K, Rakic P. Cannabinoid Type 1 Receptor is Undetectable in Rodent and Primate Cerebral Neural Stem Cells but Participates in Radial Neuronal Migration. International journal of molecular sciences. Nov 17 2020;21(22) doi:10.3390/ijms21228657

19. Morozov YM, Torii M, Rakic P. Origin, early commitment, migratory routes, and destination of cannabinoid type 1 receptor-containing interneurons. Cerebral cortex (New York, NY : 1991). Jul 2009;19 Suppl 1(Suppl 1):i78-89. doi:10.1093/cercor/bhp028

20. Bernard C, Milh M, Morozov YM, Ben-Ari Y, Freund TF, Gozlan H. Altering cannabinoid signaling during development disrupts neuronal activity. Proc Natl Acad Sci U S A. Jun 28 2005; 102(26):9388-93. doi:10.1073/pnas.0409641102

21. Bacci A, Huguenard JR, Prince DA. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature. Sep 16 2004;431(7006):312-6. doi:10.1038/nature02913

22. Marinelli S, Pacioni S, Cannich A, Marsicano G, Bacci A. Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nature neuroscience. Dec 2009;12(12):1488-90. doi:10.1038/nn.2430

23. Steiger LJ, Tsintsadze T, Mattheisen GB, Smith SM. Somatic and terminal CB1 receptors are differentially coupled to voltage-gated sodium channels in neocortical neurons. Cell reports. Mar 28 2023;42(3):112247. doi:10.1016/j.celrep.2023.112247

24. Berghuis P, Rajnicek AM, Morozov YM, et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science. May 25 2007;316 (5828):1212-6. doi:10.1126/science.1137406

25. Keimpema E, Barabas K, Morozov YM, et al. Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J Neurosci. Oct 20 2010;30(42):13992-4007. doi:10. 1523/JNEUROSCI.2126-10.2010

26. Oudin MJ, Gajendra S, Williams G, Hobbs C, Lalli G, Doherty P. Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci. Mar 16 2011;31 (11):4000-11. doi:10.1523/jneurosci.5483-10.2011

27. Tsai JW, Bremner KH, Vallee RB. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature neuroscience. Aug 2007;10(8):970-9. doi:10.1038/nn1934

28. Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME. Par6alpha signaling controls glial-guided neuronal migration. Nature neuroscience. Nov 2004;7(11):1195-203. doi:10.1038/nn1332

29. Rakic P, Knyihar-Csillik E, Csillik B. Polarity of microtubule assemblies during neuronal cell migration. Proc Natl Acad Sci U S A. Aug 20 1996; 93(17):9218-22. doi:10.1073/pnas.93.17.9218

30. Bellion A, Baudoin JP, Alvarez C, Bornens M, Métin C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci. Jun 15 2005;25(24):5691-9. doi:10 .1523/jneurosci.1030-05.2005

31. Morozov YM, Rakic P. Abnormalities of the endocannabinoid system produce piercing nuclear hernias in migrating cerebral neurons. iScience. Aug 15 2025;28(8):113188. doi:10.1016/j.isci.2025.113188

32. Hatch EM, Hetzer MW. Nuclear envelope rupture is induced by actin-based nucleus confinement. The Journal of cell biology. Oct 10 2016;215(1):27-36. doi:10.1083/jcb.201603053

33. Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol. Sep 2022;23(9):583-602. doi:10.1038/s41580-022-00480-z

34. Jung-Garcia Y, Maiques O, Monger J, et al. LAP1 supports nuclear adaptability during constrained melanoma cell migration and invasion. Nature cell biology. Jan 2023;25(1):108-119. doi: 10.1038/s41556-022-01042-3

35. Kidiyoor GR, Li Q, Bastianello G, et al. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nature Communications. 2020/09/24 2020;11(1): 4828. doi:10.1038/s41467-020-18580-9

36. Uzer G, Bas G, Sen B, et al. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access. Journal of Biomechanics. 2018/06/06/ 2018;74:32-40. doi:https://doi.org/10.1016/j.jbiomech.2018.04.013

37. Shokrollahi M, Stanic M, Hundal A, et al. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat Struct Mol Biol. Apr 17 2024;doi:10.1038/s41594-024-01286-7

38. Danielsson BE, George Abraham B, Mäntylä E, et al. Nuclear lamina strain states revealed by intermolecular force biosensor. Nature Communications. 2023/06/30 2023;14(1):3867. doi:10.1038/s41467-023-39563-6

39. Maciejowski J, Hatch EM. Nuclear Membrane Rupture and Its Consequences. Annual review of cell and developmental biology. Oct 6 2020;36:85-114. doi:10.1146/annurev-cellbio-020520-120627

40. Chen NY, Yang Y, Weston TA, et al. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proc Natl Acad Sci U S A. Dec 17 2019;116(51):25870-25879. doi:10.1073/pnas.1917225116

41. Kamikawa Y, Saito A, Imaizumi K. Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System. Neurochemical research. Sep 2022;47(9):2478-2487. doi:10.1007/s11064-022-03608-x

42. Denais CM, Gilbert RM, Isermann P, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016;352(6283):353-358. doi:doi:10.1126/science.aad7297

43. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus. Jan-Feb 2012;3(1):88-100. doi:10.4161/nucl.18954

44. Raab M, Gentili M, de Belly H, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science. Apr 15 2016;352(6283):359-62. doi:10.11 26/science.aad7611

45. Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina. Nature. Nov 5 2015;527(7576):105-9. doi:10.1038/nature15548

46. Yang Z, Maciejowski J, de Lange T. Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb. Mol Cancer Res. Nov 2017;15(11):1579-1586. doi:10.1158/1541-7786.Mcr-17-0084

47. Zhang Q, Tamashunas AC, Agrawal A, et al. Local, transient tensile stress on the nuclear membrane causes membrane rupture. Molecular biology of the cell. Mar 21 2019;30(7):899-906. doi:10.1091/mbc.E18-09-0604

48. de Noronha CM, Sherman MP, Lin HW, et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science. Nov 2 2001;294(5544):1105-8. doi:10.112 6/science.1063957

49. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. Oct 19 2017;550(7676):402-406. doi:10.1038/nature24050

50. Lindenboim L, Grozki D, Amsalem-Zafran AR, et al. Apoptotic stress induces Bax-dependent, caspase-independent redistribution of LINC complex nesprins. Cell Death Discov. 2020;6(1):90. doi:10.1038/s41420-020-00327-6

51. Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus. 2014;5(6):527-41. doi:10.4161/19491034.2014.970105

52. Pho M, Berrada Y, Gunda A, et al. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Molecular biology of the cell. Feb 1 2024;35(2):ar19. doi:10. 1091/mbc.E23-07-0292

53. Chu CG, Lang N, Walsh E, et al. Lamin B loss in nuclear blebs is rupture dependent while increased DNA damage is rupture independent. bioRxiv. Feb 25 2025;doi:10.1101/2025.02.24.639904

54. Halfmann CT, Scott KL, Sears RM, Roux KJ. Mechanisms by which barrier-to-autointegration factor regulates dynamics of nucleocytoplasmic leakage and membrane repair following nuclear envelope rupture. bioRxiv. Dec 22 2023;doi:10.11 01/2023.12.21.572811

55. De Vos WH, Houben F, Kamps M, et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet. Nov 1 2011;20(21) :4175-86. doi:10.1093/hmg/ddr344

56. Karoutas A, Szymanski W, Rausch T, et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nature cell biology. Oct 2019;21(10):1248-1260. doi:10.1038/s41556-019-0397-z

57. Schreiner SM, Koo PK, Zhao Y, Mochrie SG, King MC. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun. Jun 15 2015;6:7159. doi:10.1038/ncomms8159

58. Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Current opinion in cell biology. Jun 2019;58:76-84. doi:10.1016/j.ceb.2019.02.006

59. Halfmann CT, Roux KJ. Barrier-to-autointegration factor: a first responder for repair of nuclear ruptures. Cell cycle (Georgetown, Tex). Apr 2021;20(7):647-660. doi:10.1080/15384101.2021.1892320

60. King MC, Lusk CP, Ader NR. Sense, plug, and seal: proteins as both rapid responders and constitutive barriers supporting organelle compartmentalization. Molecular biology of the cell. Aug 1 2025;36(8): pe6. doi:10.1091/mbc.E23-08-0307

61. Young AM, Gunn AL, Hatch EM. BAF facilitates interphase nuclear membrane repair through recruitment of nuclear transmembrane proteins. Molecular biology of the cell. Jul 15 2020;31(15): 1551-1560. doi:10.1091/mbc.E20-01-0009

62. Halfmann CT, Sears RM, Katiyar A, et al. Repair of nuclear ruptures requires barrier-to-autointegration factor. The Journal of cell biology. Jul 1 2019;218(7 ):2136-2149. doi:10.1083/jcb.201901116

63. Thaller DJ, Tong D, Marklew CJ, et al. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. The Journal of cell biology. Mar 1 2021;220(3) doi:10.1083/jcb.202004222

64. Kamikawa Y, Wu Z, Nakazawa N, Ito T, Saito A, Imaizumi K. Impact of cell cycle on repair of ruptured nuclear envelope and sensitivity to nuclear envelope stress in glioblastoma. Cell Death Discov. Jul 8 2023;9(1):233. doi:10.1038/s41420-023-01534-7

65. Dias C, Nylandsted J. Neural membrane repair at the core of regeneration. Neural Regen Res. Jul 1 2024;19(7):1399-1400. doi:10.4103/1673-5374.386408

66. Cooper ST, McNeil PL. Membrane Repair: Mechanisms and Pathophysiology. Physiol Rev. Oct 2015;95(4):1205-40. doi:10.1152/physrev.00037.2014

67. Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Current opinion in cell biology. Aug 2018;53:70-76. doi: 10.1016/j.ceb.2018.06.001

68. Hendricks BK, Shi R. Mechanisms of neuronal membrane sealing following mechanical trauma. Neuroscience bulletin. Aug 2014;30(4):627-44. doi: 10.1007/s12264-013-1446-4

69. Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol. 2023;14:1114779. doi:10.3389/ fphys.2023.1114779

70. Dias C, Nylandsted J. Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov. Jan 19 2021; 7(1):4. doi:10.1038/s41421-020-00233-2

71. Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol. Mar 15 2024;156:93-106. doi:10.1016/j.semcdb.2023.08.001

72. Yuan J, Ofengeim D. A guide to cell death pathways. Nature Reviews Molecular Cell Biology. 2023/12/18 2023;doi:10.1038/s41580-023-00689-6

73. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. Jan 2015;22(1):58-73. doi:10.1038/cdd.2014.137

74. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. Jan 2009;16(1):3-11. doi:10.1038 /cdd.2008.150

75. Adhami F, Liao G, Morozov YM, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. Aug 2006;169(2):566-83. doi:10.2353/ajpath.2006.051066

76. Morozov YM, Rakic P. Disorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria. International journal of molecular sciences. Feb 23 2023;24(5)doi:10.3390/ijms24054432

77. Morozov YM, Sun YY, Kuan CY, Rakic P. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain. Eur J Neurosci. Jan 2016;43(2):245-57. doi:10.1111/ejn.13124

78. Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol. May 2021;134:105951. doi:10.1016/j.biocel. 2021.105951

79. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. Jan 16 2014;505(7483):335-43. doi:10.1038/nature12985

80. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. Aug 31 2012; 337(6098):1062-5. doi:10.1126/science.1219855

81. Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging. Mar 2017;51:9-18. doi:10.1016/j.neurobiolaging.2016.12.001

82. Bertholet AM, Delerue T, Millet AM, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiology of disease. Jun 2016;90:3-19. doi:10.1016/j.nbd.2015.10.011

83. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A. May 11 1999;96(10):5780-5. doi:10.1073/pnas.96.10.5780

84. Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells. Jun 18 2023;12(12)doi:10.3390/cells12121660

85. Tagliaferro P, Javier Ramos A, Onaivi ES, Evrard SG, Lujilde J, Brusco A. Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55,212-2. Brain Res. Apr 26 2006;1085(1):163-76. doi:10.1016/j.brainres.2005.12.089

86. Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience. 2005/01/01/ 2005;134(1):261-268. doi:https://doi.org/10.1016/j.neuroscience.2005.02.045

87. Soriano D, Vacotto M, Brusco A, Caltana L. Neuronal and synaptic morphological alterations in the hippocampus of cannabinoid receptor type 1 knockout mice. Journal of neuroscience research. Nov 2020;98(11):2245-2262. doi:10.1002/jnr.24694

88. Yuan XB, Jin M, Xu X, et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature cell biology. Jan 2003;5(1):38-45. doi:10.1038/ncb895

89. Hall A. Rho family GTPases. Biochemical Society transactions. Dec 1 2012;40(6):1378-82. doi:10.1042/bst20120103

90. Roland AB, Ricobaraza A, Carrel D, et al. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. eLife. Sep 15 2014;3:e03159. doi:10.7554/eLife.03159

91. Mahomed A, Girn D, Pattani A, et al. Cannabinoid receptor type 1 regulates sequential stages of migration and morphogenesis of neural crest cells and derivatives in chicken and frog embryos. J Morphol. Jul 2023;284(7):e21606. doi:10.1002/jmor.21606

92. Mereu G, Fà M, Ferraro L, et al. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc Natl Acad Sci U S A. Apr 15 2003;100(8):4915-20. doi:10.1073/pnas.0537849100

93. Antonelli T, Tomasini MC, Tattoli M, et al. Prenatal exposure to the CB1 receptor agonist WIN 55,212-2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring. Cerebral cortex (New York, NY : 1991). Dec 2005;15(12):2013-20. doi:10.1093/cercor/bhi076

94. Tree KC, Scotto di Perretolo M, Peyronnet J, Cayetanot F. In utero cannabinoid exposure alters breathing and the response to hypoxia in newborn mice. Eur J Neurosci. Jul 2014;40(1):2196-204. doi:10.1111/ejn.12588

95. Fride E. The endocannabinoid-CB(1) receptor system in pre- and postnatal life. Eur J Pharmacol. Oct 1 2004;500(1-3):289-97. doi:10.1016/j.ejphar.2004.07.033

96. Mulder J, Aguado T, Keimpema E, et al. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc Natl Acad Sci U S A. Jun 24 2008;105(25):8760-5. doi:10.1073/pnas.0803545105

97. Diaz-Alonso J, de Salas-Quiroga A, Paraiso-Luna J, et al. Loss of Cannabinoid CB1 Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility. Cerebral cortex (New York, NY : 1991). Nov 1 2017;27(11):5303-5317. doi:10.1093/cercor/bhw309

98. Rouzer SK, Domen M, George A, Bowring A, Miranda RC. Early life outcomes of prenatal exposure to alcohol and synthetic cannabinoids in mice. Drug Alcohol Depend Rep. Sep 2025;16: 100356. doi:10.1016/j.dadr.2025.100356

99. Sideris A, Lauzadis J, Kaczocha M. The Basic Science of Cannabinoids. Anesth Analg. Jan 1 2024;138(1):42-53. doi:10.1213/ane.0000000000006472

100. Sacco R, Riccitelli GC, Disanto G, et al. Effectiveness, Safety and Patients' Satisfaction of Nabiximols (Sativex(®)) on Multiple Sclerosis Spasticity and Related Symptoms in a Swiss Multicenter Study. J Clin Med. May 14 2024; 13(10)doi:10.3390/jcm13102907

101. Gray RA, Whalley BJ. The proposed mechanisms of action of CBD in epilepsy. Epileptic Disord. Jan 1 2020;22(S1):10-15. doi:10.1684/epd.2020.1135

102. Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochemical pharmacology. Nov 2018;157:18-32. doi:10.1016/j.bcp.2018.07.036

103. de Oliveira RW, Oliveira CL, Guimaraes FS, Campos AC. Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta neuropsychiatrica. May 16 2018:1-16. doi:10.1017/ neu.2018.11

104. Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther. Apr 2023;244:108394. doi:10.1016/j.pharmthera.2023.108394

105. Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules. Sep 18 2021;26(18)doi:10.3390/molecules26185668

106. Pasquarelli N, Porazik C, Bayer H, et al. Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochemistry International. 2017/11/01/ 2017;110:14-24. doi:https://doi.org/10.1016/j.neuint.2017.08.003

107. Schurman LD, Lichtman AH. Endocannabinoids: A Promising Impact for Traumatic Brain Injury. Review. Frontiers in Pharmacology. 2017-February-17 2017;8doi:10.3389/fphar.2017.00069

108. Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature. Oct 4 2001;413(6855):527-31. doi:10.1038/35097089

109. Guzmán M, Duarte MJ, Blázquez C, et al. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer. 2006/07/01 2006;95(2): 197-203. doi:10.1038/sj.bjc.6603236

110. Zaiachuk M, Pryimak N, Kovalchuk O, Kovalchuk I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Review. Frontiers in Medicine. 2021-September-24 2021;8 doi:10.3389/fmed.2021.713153

111. Bathula PP, Maciver MB. Cannabinoids in Treating Chemotherapy-Induced Nausea and Vomiting, Cancer-Associated Pain, and Tumor Growth. International journal of molecular sciences. 2024;25(1):74.

112. Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. International journal of molecular sciences. 2022;23(6):3344.

113. Pennant NM, Hinton CV. The evolution of cannabinoid receptors in cancer. WIREs Mech Dis. Jul-Aug 2023;15(4):e1602. doi:10.1002/wsbm.1602

114. Bononi G, Di Stefano M, Poli G, et al. Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. J Med Chem. May 26 2022;65(10):711 8-7140. doi:10.1021/acs.jmedchem.1c01806

115. Nahler G. Treatment of malignant diseases with phytocannabinoids: promising observations in animal models and patients. Exploration of Medicine. 2023;4(6):847-877. doi:10.37349/emed.2023.00182

116. Guggisberg J, Schumacher M, Gilmore G, Zylla DM. Cannabis as an Anticancer Agent: A Review of Clinical Data and Assessment of Case Reports. Cannabis Cannabinoid Res. Feb 2022;7 (1):24-33. doi:10.1089/can.2021.0045

117. Afrin F, Chi M, Eamens AL, et al. Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer. Cancers (Basel). Apr 23 2020;12(4)doi:10.3390/cancers12041033

118. Fowler CJ. Delta(9) -tetrahydrocannabinol and cannabidiol as potential curative agents for cancer: A critical examination of the preclinical literature. Clin Pharmacol Ther. Jun 2015;97(6):587-96. doi:10.1002/cpt.84