Metabolic Health: The key to preventing cancer treatment-related lymphedema?
Main Article Content
Abstract
Lymphedema is a chronic and often irreversible complication of cancer treatment, marked by persistent tissue swelling, fibrosis, and adipose deposition in the affected body region. Although several risk factors have been identified, predicting which patients will develop lymphedema remains a significant clinical challenge. Growing evidence links poor metabolic health and insulin resistance to increased susceptibility to lymphedema, while interventions that improve metabolic function, including glucagon-like peptide-1 (GLP-1) receptor agonists and diabetes medications, have shown symptom-reducing effects. Notably, the ketogenic diet (KD), known for reversing insulin resistance and enhancing metabolic health, has demonstrated promise in managing lymphedema. A KD may confer additional advantages through ketone exposure. This paper explores the hypothesis that proactively improving metabolic and lymphatic health, specifically through ketogenic dietary strategies, could offer a novel means of preventing lymphedema in individuals undergoing cancer treatment. By examining the metabolic underpinnings of lymphedema and the beneficial targets of ketone exposure, we advocate for a paradigm shift: from managing lymphedema as a secondary complication to preventing it through early ketogenic dietary intervention.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Rahavi EB, Altman JM, Stoody EE. Dietary Guidelines for Americans, 2015–2020: National Nutrition Guidelines. In: Lifestyle Medicine, Third Edition. 3rd ed. CRC Press; 2019.
3. Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes. 2019;12:2221-2236. doi:10.2147/DMSO.S216791
4. Brown S, Tadros AB, Montagna G, et al. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may reduce the risk of developing cancer-related lymphedema following axillary lymph node dissection (ALND). Front Pharmacol. 2024;15: 1457363. doi:10.3389/fphar.2024.1457363
5. O’Hearn M, Lauren BN, Wong JB, Kim DD, Mozaffarian D. Trends and Disparities in Cardiometabolic Health Among U.S. Adults, 1999–2018. J Am Coll Cardiol. 2022;80(2):138-151. doi:10.1016/j.jacc.2022.04.046
6. Wei M, Wang L, Liu X, et al. Metformin Eliminates Lymphedema in Mice by Alleviating Inflammation and Fibrosis: Implications for Human Therapy. Plast Reconstr Surg. 2024;154(6):1128-1137. doi:10.1097/PRS.0000000000011363
7. Hyde PN, Sapper TN, Crabtree CD, et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight. 4(12):e128308. doi:10.1172/jci.insight.128308
8. Chen S, Su X, Feng Y, et al. Ketogenic Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analysis. Nutrients. 2023;15(19):4161. doi:10.3390/nu15194161
9. García-Caballero M, Zecchin A, Souffreau J, et al. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat Metab. 2019;1(7):666-675. doi:10.1038/s42255-019-0087-y
10. Petrek JA, Senie RT, Peters M, Rosen PP. Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer. 2001;92(6):1368-1377. doi:10.1002/1097-0142(20010915)92:6<1368::AID-CNCR1459>3.0.CO;2-9
11. Johansson K, and Branje E. Arm lymphoedema in a cohort of breast cancer survivors 10 years after diagnosis. Acta Oncol. 2010;49(2):166-173. doi:10.3109/02841860903483676
12. Li CY, Kataru RP, Mehrara BJ. Histopathologic Features of Lymphedema: A Molecular Review. Int J Mol Sci. 2020;21(7):2546. doi:10.3390/ijms21072546
13. Jones D, Meijer EFJ, Blatter C, et al. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med. 2018;10(424):eaam7964. doi:10.1126/scitranslmed.aam7964
14. Yuan Y, Arcucci V, Levy SM, Achen MG. Modulation of Immunity by Lymphatic Dysfunction in Lymphedema. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00076
15. Dominick SA, Madlensky L, Natarajan L, Pierce JP. Risk factors associated with breast cancer-related lymphedema in the WHEL Study. J Cancer Surviv. 2013;7(1):115-123. doi:10.1007/s11764-012-0251-9
16. Koelmeyer LA, Gaitatzis K, Dietrich MS, et al. Risk factors for breast cancer–related lymphedema in patients undergoing 3 years of prospective surveillance with intervention. Cancer. 2022;128 (18):3408-3415. doi:10.1002/cncr.34377
17. Shen A, Lu Q, Fu X, et al. Risk factors of unilateral breast cancer-related lymphedema: an updated systematic review and meta-analysis of 84 cohort studies. Support Care Cancer. 2022;31(1):18. doi:10.1007/s00520-022-07508-2
18. Letellier ME, Ibrahim M, Towers A, Chaput G. Incidence of lymphedema related to various cancers. Med Oncol Northwood Lond Engl. 2024;41(10):245. doi:10.1007/s12032-024-02441-2
19. Izawa T, Kobayashi A, Kawashima M, et al. Quantitative analysis of the effect of docetaxel-induced edema on quality of life in patients with breast cancer and related factors: a prospective cohort study. BMC Womens Health. 2024;24:165. doi:10.1186/s12905-024-03003-4
20. Stout NL, Dierkes M, Oliveri JM, Rockson S, Paskett ED. The influence of non-cancer-related risk factors on the development of cancer-related lymphedema: a rapid review. Med Oncol. 2024;41(11):274. doi:10.1007/s12032-024-02474-7
21. Leray H, Malloizel-Delaunay J, Lusque A, et al. Body Mass Index as a Major Risk Factor for Severe Breast Cancer-Related Lymphedema. Lymphat Res Biol. 2020;18(6):510-516. doi:10.1089/lrb.2019.0009
22. Chakraborty S, Zawieja S, Wang W, Zawieja DC, Muthuchamy M. Lymphatic system: a vital link between metabolic syndrome and inflammation. Ann N Y Acad Sci. 2010;1207(s1):E94-E102. doi:10.1111/j.1749-6632.2010.05752.x
23. Doruk Analan P, Kaya E. Is There a Relationship Between Insulin Resistance and Breast Cancer-Related Lymphedema? A Preliminary Study. Lymphat Res Biol. 2022;20(1):76-81. doi:10.1089/lrb.2019.0072
24. Lee Y, Chakraborty S, Meininger CJ, Muthuchamy M. Insulin resistance disrupts cell integrity, mitochondrial function, and inflammatory signaling in lymphatic endothelium. Microcirculation. 2018;25(7):e12492. doi:10.1111/micc.12492
25. Rockson SG, Rivera KK. Estimating the population burden of lymphedema. Ann N Y Acad Sci. 2008;1131:147-154. doi:10.1196/annals.1413.014
26. Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology. 2020;53(1):3-19. doi:10.2458/lymph.4649
27. Granzow JW. Lymphedema surgery: the current state of the art. Clin Exp Metastasis. 2018;35(5):553-558. doi:10.1007/s10585-018-9897-7
28. Coriddi M, Mehrara B, Skoracki R, Singhal D, Dayan JH. Immediate Lymphatic Reconstruction: Technical Points and Literature Review. Plast Reconstr Surg – Glob Open. 2021;9(2):e3431. doi:10.1097/GOX.0000000000003431
29. Ge LP, Tang L, Zuo W, et al. Psychological Stress and Its Correlations to Patients with Acute Lymphedema After Breast Cancer Surgery. Breast Cancer Targets Ther. 2024;16:867-876. doi:10.2147/BCTT.S485827
30. Zhou X, Su X, Ma G, Tang Y, Wu J, Liu B. Depression and Psychological Distress in Patients with Lower Extremity Lymphedema: A Mixed-Method Study. Lymphat Res Biol. 2025;23(2):115-122. doi:10.1089/lrb.2024.0071
31. Monteiro AJ, de Labra C, Losa-Iglesias ME, et al. Depressive symptoms and their severity in a sample with lymphedema: a case–control investigation. Front Psychiatry. 2023;14. doi:10.3389/fpsyt.2023.1202940
32. Jager G, Doller W, Roth R. Quality-of-life and body image impairments in patients with lymphedema. Lymphology. 2006;39(4). Accessed July 17, 2025. http://journals.librarypublishing.arizona.edu/lymph/article/id/3568/
33. Diana R, Raditya Atmaka D. Ketogenic diet for weight loss and its implications on health: A literature study. Media Gizi Indones. 2020;15(3):184-193. doi:10.20473/mgi.v15i3.184-193
34. Bisschop PH, Pereira Arias AM, Ackermans MT, et al. The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men. J Clin Endocrinol Metab. 2000;85(5):1963-1967. doi:10.1210/jcem.85.5.6573
35. Bachar A, Birk R. Ketogenic Diet Intervention for Obesity Weight-Loss- A Narrative Review, Challenges, and Open Questions. Curr Nutr Rep. 2025;14(1):43. doi:10.1007/s13668-025-00634-3
36. Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S, Liu Y. The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2025;83(1):40-58. doi:10.1093/nutrit/nuad175
37. Kosinski C, Jornayvaz FR. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies. Nutrients. 2017;9(5):517. doi:10.3390/nu9050517
38. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789-796. doi:10.1038/ejcn.2013.116
39. Zampell JC, Aschen S, Weitman ES, et al. Regulation of Adipogenesis by Lymphatic Fluid Stasis Part I: Adipogenesis, Fibrosis, and Inflammation. Plast Reconstr Surg. 2012;129(4):825-834. doi:10.1097/PRS.0b013e3182450b2d
40. Wong BW, Wang X, Zecchin A, et al. The role of fatty acid β-oxidation in lymphangiogenesis. Nature. 2017;542(7639):49-54. doi:10.1038/nature21028
41. Lodewijckx I, Matthys C, Verheijen J, et al. Potential therapeutic effect of a ketogenic diet for the treatment of lymphoedema: Results of an exploratory study. J Hum Nutr Diet. 2024;37(4):885-891. doi:10.1111/jhn.13330
42. Helyer LK, Varnic M, Le LW, Leong W, McCready D. Obesity is a Risk Factor for Developing Postoperative Lymphedema in Breast Cancer Patients. Breast J. 2010;16(1):48-54. doi:10.1111/j.1524-4741.2009.00855.x
43. Sudduth CL, Greene AK. Lymphedema and Obesity. Cold Spring Harb Perspect Med. 2022;12(5):a 041176. doi:10.1101/cshperspect.a041176
44. Yusof KM, Avery-Kiejda KA, Ahmad Suhaimi S, et al. Assessment of Potential Risk Factors and Skin Ultrasound Presentation Associated with Breast Cancer-Related Lymphedema in Long-Term Breast Cancer Survivors. Diagnostics. 2021;11(8):1303. doi:10.3390/diagnostics11081303
45. Pirincci CS, Mete O, Yasa ME, Dalyan M. A comparative evaluation of the efficacy of complete decongestive therapy in the treatment of unilateral breast cancer–related lymphedema with and without metabolic syndrome. Support Care Cancer. 2024;32(7):473. doi:10.1007/s00520-024-08676-z
46. Redick JC, Kesslering C. Resolution of Persistent Chylothorax With a Ketogenic Diet: A Case Report. Cureus. 2024;16(7):e64144. doi:10.7759/cureus.64144
47. de la Monte SM. Metabolic derangements mediate cognitive impairment and Alzheimer’s disease: role of peripheral insulin resistance diseases. Panminerva Med. 2012;54(3):171-178.
48. Campbell DB, Sobol CG, Stacy MR, et al. Revascularization Outcomes Stratified by Glycemic Control in Patients with Diabetes Mellitus and Chronic Limb-Threatening Ischemia. Ann Vasc Surg. 2024;100:91-100. doi:10.1016/j.avsg.2023.10.018
49. Sharma MD, Garber AJ, Farmer JA. Role of Insulin Signaling in Maintaining Energy Homeostasis. Endocr Pract. 2008;14(3):373-380. doi:10.4158/EP.ep.14.3.373
50. Chandrasekaran P, Weiskirchen R. Cellular and Molecular Mechanisms of Insulin Resistance. Curr Tissue Microenviron Rep. 2024;5(3):79-90. doi:10.1007/s43152-024-00056-3
51. Ransom T. Are Vegetable Seed Oils Fueling the Obesity Epidemic? Social Science Research Network. Preprint posted online October 28, 2024. Accessed October 28, 2025. https://papers.ssrn.com/abstract=4997712
52. Graham DS, Liu G, Arasteh A, Yin XM, Yan S. Ability of high fat diet to induce liver pathology correlates with the level of linoleic acid and Vitamin E in the diet. PLOS ONE. 2023;18(6):e0286726. doi:10.1371/journal.pone.0286726
53. Acosta M. High Fructose Corn Syrup’s Role in Obesity Among Hispanic Adolescent Females in the Texas-Mexico Border. DHR Proc. 2025;4(1):30-44. doi:10.47488/dhrp.v4iS1.3
54. Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. Food Additive Emulsifiers and Their Impact on Gut Microbiome, Permeability, and Inflammation: Mechanistic Insights in Inflammatory Bowel Disease. J Crohns Colitis. 2021;15(6):1068-1079. doi:10.1093/ecco-jcc/jjaa254
55. Noakes TD. Hiding unhealthy heart outcomes in a low-fat diet trial: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial finds that postmenopausal women with established coronary heart disease were at increased risk of an adverse outcome if they consumed a low-fat ‘heart-healthy’ diet. Open Heart. 2021;8(2). doi:10.1136/openhrt-2021-001680
56. Gardner CD, Trepanowski JF, Del Gobbo LC, et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA. 2018;319(7):667-679. doi:10.1001/jama.2018.0245
57. Sacks FM, Bray GA, Carey VJ, et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N Engl J Med. 2009;360(9):859-873. doi:10.1056/NEJMoa0804748
58. Ebbeling CB, Feldman HA, Klein GL, et al. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ. Published online November 14, 2018:k4583. doi:10.1136/bmj.k4583
59. Müller M j., Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans. Obesity. 2013;21(2):218-228. doi:10.1002/oby.20027
60. Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity: Beyond “Calories In, Calories Out.” JAMA Intern Med. 2018;178(8):1098-1103. doi:10.1001/jamainternmed.2018.2933
61. Rubin J, Pollack B, Coleman-Belin J, et al. Metformin Use and Risk of Breast Cancer-Related Lymphedema: A Retrospective Analysis. J Am Coll Surg. Published online January 19, 2023:10. 1097/XCS.0000000000001434. doi:10.1097/XCS.0000000000001434
62. Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol. 2022;77(1):206-218. doi:10.1016/j.jhep.2022.01.025
63. Kataru RP, Park HJ, Baik JE, Li C, Shin J, Mehrara BJ. Regulation of Lymphatic Function in Obesity. Front Physiol. 2020;11:459. doi:10.3389/fphys.2020.00459
64. Rockson SG. Advances in Lymphedema. Circ Res. 2021;128(12):2003-2016. doi:10.1161/CIRCRESAHA.121.318307
65. Hossain L, Gomes KP, Safarpour S, Gibson SB. The microenvironment of secondary lymphedema. The key to finding effective treatments? Biochim Biophys Acta Mol Basis Dis. 2025;1871(3):167677. doi:10.1016/j.bbadis.2025.167677
66. Liao S, von der Weid PY. Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis. 2014;17(2):325-334. doi:10.1007/s10456-014-9416-7
67. Cataldi A. Cell responses to oxidative stressors. Curr Pharm Des. 2010;16(12):1387-1395. doi:10.2174/138161210791033969
68. Bowman C, Rockson SG. The Role of Inflammation in Lymphedema: A Narrative Review of Pathogenesis and Opportunities for Therapeutic Intervention. Int J Mol Sci. 2024;25(7):3907. doi:10.3390/ijms25073907
69. Siems WG, Brenke R, Beier A, Grune T. Oxidative stress in chronic lymphoedema. QJM Int J Med. 2002;95(12):803-809. doi:10.1093/qjmed/95.12.803
70. Ridner SH. Pathophysiology of lymphedema. Semin Oncol Nurs. 2013;29(1):4-11. doi:10.1016/j.soncn.2012.11.002
71. Wang P, Guo X, Zhou Y, et al. Monocyte-to-high-density lipoprotein ratio and systemic inflammation response index are associated with the risk of metabolic disorders and cardiovascular diseases in general rural population. Front Endocrinol. 2022;13. doi:10.3389/fendo.2022.944991
72. Forsythe CE, Phinney SD, Fernandez ML, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43(1):65-77. doi:10.1007/s11745-007-3132-7
73. Gyorkos A, Baker MH, Miutz LN, Lown DA, Jones MA, Houghton-Rahrig LD. Carbohydrate-restricted Diet and High-intensity Interval Training Exercise Improve Cardio-metabolic and Inflammatory Profiles in Metabolic Syndrome: A Randomized Crossover Trial. Cureus. 2019;11(9):e5596. doi:10.7759/cureus.5596
74. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol-Cell Physiol. 2021;320(3):C375-C391. doi:10.1152/ajpcell.00379.2020
75. Cunha GM, Guzman G, Correa De Mello LL, et al. Efficacy of a 2-Month Very Low-Calorie Ketogenic Diet (VLCKD) Compared to a Standard Low-Calorie Diet in Reducing Visceral and Liver Fat Accumulation in Patients With Obesity. Front Endocrinol. 2020;11. doi:10.3389/fendo.2020.00607
76. Amini MR, Aminianfar A, Naghshi S, Larijani B, Esmaillzadeh A. The effect of ketogenic diet on body composition and anthropometric measures: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2022;62(13):3644-3657. doi:10.1080/10408398.2020.1867957
77. Castro-Barquero S, Casas R, Rimm EB, et al. Loss of Visceral Fat is Associated with a Reduction in Inflammatory Status in Patients with Metabolic Syndrome. Mol Nutr Food Res. 2023;67(4): 2200264. doi:10.1002/mnfr.202200264
78. Kong G, Wang J, Li R, Huang Z, Wang L. Ketogenic diet ameliorates inflammation by inhibiting the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther. 2022;24(1):113. doi:10.1186/s13075-022-02802-0
79. Nguyen LK, Cavadas MAS, Scholz CC, et al. A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci. 2013;126(Pt 6):1454-1463. doi:10.1242/jcs.119974
80. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268-283. doi:10.1038/s41580-020-0227-y
81. Jiang X, Tian W, Granucci EJ, et al. Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema. J Clin Invest. 2020;130(10):5562-5575. doi:10.1172/JCI136164
82. Ji RC. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 2014;346(1):6-16. doi:10.1016/j.canlet.2013.12.001
83. Parveen K, Salman M, Mirzahosseini G, Parveen A, Ishrat T, Puchowicz MA. Chronic Ketosis Provides Neuroprotection Through HIF- 1α-Mediated Control of the TXNIP/NLRP3 Axis by Regulating the Inflammatory and Apoptotic Response. Mol Neurobiol. 2025;62(9):11238-11252. doi:10.1007/s12035-025-04943-0
84. Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab. 2010;7(1):74. doi:10.1186/1743-7075-7-74
85. Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25(2):262-284. doi:10.1016/j.cmet.2016.12.022
86. Kirsch JR, D’Alecy LG. Hypoxia induced preferential ketone utilization by rat brain slices. Stroke. 1984;15(2):319-323. doi:10.1161/01.STR.15.2.319
87. Preiser JC. Oxidative Stress. J Parenter Enter Nutr. 2012;36(2):147-154. doi:10.1177/0148607111434963
88. Alhamzah SA, Gatar OM, Alruwaili NW. Effects of ketogenic diet on oxidative stress and cancer: A literature review. Adv Cancer Biol - Metastasis. 2023;7:100093. doi:10.1016/j.adcanc.2023.100093
89. Tabibiazar R, Cheung L, Han J, et al. Inflammatory Manifestations of Experimental Lymphatic Insufficiency. PLOS Med. 2006;3(7):e254. doi:10.1371/journal.pmed.0030254
90. Chaniotakis I, Charalampidis PS, Gaitanis G, et al. Serum anti-oxidative reserves during cellulitis: a pilot study. Eur J Dermatol. 2017;27(4):431-433. doi:10.1684/ejd.2017.3045
91. Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells. 2022;11(11):1750. doi:10.3390/cells11111750
92. Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants. 2018;7(5):63. doi:10.3390/antiox7050063
93. Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol. 2021;599(3):803-817. doi:10.1113/JP278853
94. Miller VJ, LaFountain RA, Barnhart E, et al. A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am J Physiol Endocrinol Metab. 2020;319(6):E995-E1007. doi:10.1152/ajpendo.00305.2020
95. Shimizu Y, Shibata R, Ishii M, et al. Adiponectin‐mediated modulation of lymphatic vessel formation and lymphedema. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2013;2(5). doi:10.1161/JAHA.113.000438
96. Aldrich MB, Rasmussen JC, Fife CE, Shaitelman SF, Sevick-Muraca EM. The Development and Treatment of Lymphatic Dysfunction in Cancer Patients and Survivors. Cancers. 2020;12(8):2280. doi:10.3390/cancers12082280
97. Azhar SH, Lim HY, Tan BK, Angeli V. The Unresolved Pathophysiology of Lymphedema. Front Physiol. 2020;11:137. doi:10.3389/fphys.2020.00137
98. Sung C, Wang S, Hsu J, Yu R, Wong AK. Current Understanding of Pathological Mechanisms of Lymphedema. Adv Wound Care. 2022;11(7):361-373. doi:10.1089/wound.2021.0041
99. Wilting J, Felmerer G, Becker J. Control of the extracellular matrix by hypoxic lymphatic endothelial cells: Impact on the progression of lymphedema? Dev Dyn Off Publ Am Assoc Anat. 2023;252(2):227-238. doi:10.1002/dvdy.460
100. DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci. 2020;21(17):6030. doi:10.3390/ijms21176030
101. Foglia B, Novo E, Protopapa F, et al. Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells. 2021;10(7):1764. doi:10.3390/cells10071764
102. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127(1):55-64. doi:10.1172/JCI88881
103. Gonçalves A, Alves IN, Mendes C, et al. Ketogenic diet and ketone salts differentially improve cardiometabolic complications in an HFpEF rat model. J Physiol. Published online April 3, 2025. doi:10.1113/JP288229
104. Qiu Y, Hu X, Xu C, et al. Ketogenic diet alleviates renal fibrosis in mice by enhancing fatty acid oxidation through the free fatty acid receptor 3 pathway. Front Nutr. 2023;10:1127845. doi:10.3389/fnut.2023.1127845
105. Wang W, Ishibashi J, Trefely S, et al. A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab. 2019;30(1):174-189.e5. doi:10.1016/j.cmet.2019.05.005
106. Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci. 2023;24(3):2576. doi:10.3390/ijms24032576
107. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors Chur Switz. 2011;29(5):196-202. doi:10.3109/08977194.2011.595714
108. Ridner SH, Dietrich MS, Sonis ST, Murphy B. Biomarkers Associated with Lymphedema and Fibrosis in Patients with Cancer of the Head and Neck. Lymphat Res Biol. 2018;16(6):516-524. doi:10.1089/lrb.2017.0074
109. Baik JE, Park HJ, Kataru RP, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12(6):e758. doi:10.1002/ctm2.758
110. Oka M, Iwata C, Suzuki HI, et al. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 2008;111(9):4571-4579. doi:10.1182/blood-2007-10-120337
111. Mu E, Wang J, Chen L, Lin S, Chen J, Huang X. Ketogenic diet induces autophagy to alleviate bleomycin-induced pulmonary fibrosis in murine models. Exp Lung Res. 2021;47(1):26-36. doi:10.1080/01902148.2020.1840667
112. Lecoutre S, Merabtene F, El Hachem EJ, et al. Beta-hydroxybutyrate dampens adipose progenitors’ profibrotic activation through canonical Tgfβ signaling and non-canonical ZFP36-dependent mechanisms. Mol Metab. 2022;61:101512. doi:10.1016/j.molmet.2022.101512
113. Li J, He W, Wu Q, et al. Ketogenic diets and β-hydroxybutyrate in the prevention and treatment of diabetic kidney disease: current progress and future perspectives. BMC Nephrol. 2025;26(1):127. doi:10.1186/s12882-025-04019-0
114. Harvey NL. The Link between Lymphatic Function and Adipose Biology. Ann N Y Acad Sci. 2008;1131(1):82-88. doi:10.1196/annals.1413.007
115. Brorson H. From lymph to fat: complete reduction of lymphoedema. Phlebology. 2010;25(1_suppl):52-63. doi:10.1258/phleb.2010.010s08
116. Escobedo N, Proulx ST, Karaman S, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 1(2):e85096. doi:10.1172/jci.insight.85096
117. Hoffner M, Peterson P, Månsson S, Brorson H. Lymphedema Leads to Fat Deposition in Muscle and Decreased Muscle/Water Volume After Liposuction: A Magnetic Resonance Imaging Study. Lymphat Res Biol. 2018;16(2):174-181. doi:10.1089/lrb.2017.0042
118. Koc M, Wald M, Varaliová Z, et al. Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors. Sci Rep. 2021;11:8171. doi:10.1038/s41598-021-87494-3
119. Tashiro K, Feng J, Wu SH, et al. Pathological changes of adipose tissue in secondary lymphoedema. Br J Dermatol. 2017;177(1):158-167. doi:10.1111/bjd.15238
120. Levi B, Glotzbach JP, Sorkin M, et al. Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast Reconstr Surg. 2013;132(3):580-589. doi:10.1097/PRS.0b013e31829ace13
121. Keith L, Rowsemitt C, Richards LG. Lifestyle modification group for lymphedema and obesity results in significant health outcomes. Am J Lifestyle Med. Published online November 21, 2017:155982761774210. doi:10.1177/1559827617742108
122. Amato ACM, Amato JLS, Benitti DA. The Efficacy of Ketogenic Diets (Low Carbohydrate; High Fat) as a Potential Nutritional Intervention for Lipedema: A Systematic Review and Meta-Analysis. Nutrients. 2024;16(19):3276. doi:10.3390/nu16193276
123. Lundanes J, Gårseth M, Taylor S, et al. The effect of a low-carbohydrate diet on subcutaneous adipose tissue in females with lipedema. Front Nutr. 2024;11. doi:10.3389/fnut.2024.1484612
124. Lundanes J, Sandnes F, Gjeilo KH, et al. Effect of a low-carbohydrate diet on pain and quality of life in female patients with lipedema: a randomized controlled trial. Obesity. 2024;32(6):1071-1082. doi:10.1002/oby.24026
125. Egashira R, Matsunaga M, Miyake A, et al. Long-Term Effects of a Ketogenic Diet for Cancer. Nutrients. 2023;15(10):2334. doi:10.3390/nu15102334
126. Zhang M, Zhang Q, Huang S, Lu Y, Peng M. Impact of ketogenic diets on cancer patient outcomes: a systematic review and meta-analysis. Front Nutr. 2025;12. doi:10.3389/fnut.2025.1535921
127. Martin-McGill KJ, Marson AG, Tudur Smith C, et al. Ketogenic diets as an adjuvant therapy for glioblastoma (KEATING): a randomized, mixed methods, feasibility study. J Neurooncol. 2020;147(1):213-227. doi:10.1007/s11060-020-03417-8
128. Cortez NE, Mackenzie GG. Ketogenic Diets in Pancreatic Cancer and Associated Cachexia: Cellular Mechanisms and Clinical Perspectives. Nutrients. 2021;13(9):3202. doi:10.3390/nu13093202
129. Kenig S, Petelin A, Poklar Vatovec T, Mohorko N, Jenko-Pražnikar Z. Assessment of micronutrients in a 12-wk ketogenic diet in obese adults. Nutr Burbank Los Angel Cty Calif. 2019;67-68:110522. doi:10.1016/j.nut.2019.06.003
130. Bueno NB, Melo ISV de, Oliveira SL de, Ataide T da R. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178-1187. doi:10.1017/S0007114513000548
131. Falkenhain K, Roach LA, McCreary S, et al. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the context of weight loss or weight maintenance: a systematic review and meta-analysis. Am J Clin Nutr. 2021;114(4):1455-1466. doi:10.1093/ajcn/nqab212
132. Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol. 2010;21(4):305-311. doi:10.1097/MOL.0b013e32833b7756
133. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep. 2010;12(6):384-390. doi:10.1007/s11883-010-0131-6
134. Volek J. The Art and Science of Low Carbohydrate Living : An Expert Guide to Making the Life-Saving Benefits of Carbohydrate Restriction Sustainable and Enjoyable. Lexington, KY: Beyond Obesity; 2011. Accessed July 21, 2025. http://archive.org/details/artscienceoflowc0000vole
135. Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16(1):53. doi:10.1186/s12937-017-0271-4
136. Norwitz NG, Feldman D, Soto-Mota A, Kalayjian T, Ludwig DS. Elevated LDL Cholesterol with a Carbohydrate-Restricted Diet: Evidence for a “Lean Mass Hyper-Responder” Phenotype. Curr Dev Nutr. 2022;6(1):nzab144. doi:10.1093/cdn/nzab144
137. Norwitz NG, Soto-Mota A. Case report: Carnivore–ketogenic diet for the treatment of inflammatory bowel disease: a case series of 10 patients. Front Nutr. 2024;11. doi:10.3389/fnut.2024.1467475
138. Norwitz NG, Soto-Mota A, Kaplan B, et al. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites. 2022;12(5):460. doi:10.3390/metabo12050460
139. Soto-Mota A, Flores-Jurado Y, Norwitz NG, et al. Increased low-density lipoprotein cholesterol on a low-carbohydrate diet in adults with normal but not high body weight: A meta-analysis. Am J Clin Nutr. 2024;119(3):740-747. doi:10.1016/j.ajcnut.2024.01.009
140. Budoff M, Manubolu VS, Kinninger A, et al. Carbohydrate Restriction-Induced Elevations in LDL-Cholesterol and Atherosclerosis. JACC Adv. 2024;3(8):101109. doi:10.1016/j.jacadv.2024.101109
141. Klement RJ, Champ CE, Kämmerer U, et al. Impact of a ketogenic diet intervention during radiotherapy on body composition: III—final results of the KETOCOMP study for breast cancer patients. Breast Cancer Res. 2020;22(1):94. doi:10.1186/s13058-020-01331-5
142. Kämmerer U, Klement RJ, Joos FT, Sütterlin M, Reuss-Borst M. Low Carb and Ketogenic Diets Increase Quality of Life, Physical Performance, Body Composition, and Metabolic Health of Women with Breast Cancer. Nutrients. 2021;13(3):1029. doi:10.3390/nu13031029
143. Breitkreutz R, Tesdal K, Jentschura D, Haas O, Leweling H, Holm E. Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wien Klin Wochenschr. 2005;117(19):685-692. doi:10.1007/s00508-005-0455-3
144. Kristoffersen AE, Stub T, Nilsen JV, et al. Exploring dietary changes and supplement use among cancer patients in Norway: prevalence, motivations, disclosure, information, and perceived risks and benefits: a cross sectional study. BMC Nutr. 2024;10(1):65. doi:10.1186/s40795-024-00872-8
145. Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol-Endocrinol Metab. 1999;277(6):E1130-E1141. doi:10.1152/ajpendo.1999.277.6.E1130
146. Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: Reflecting or Inflicting Insulin Resistance? Diabetes. 2012;62(1):1-8. doi:10.2337/db12-0466